
Chapter 2

The one dimensional wave

equation

2.1 Derivation of the wave equation

sec:derive-1D-wave

In the previous chapter we saw how the principle of conservation of energy
leads to the simple harmonic oscillator equation. We now apply the same
sort of logic to a more complicated problem: the oscillation of a string.
The first thing we need to do is figure out how to describe the motion of
a string using a function. We can accomplish this by supposing that the
string is confined to move in the xy plane, and that the string lies along
the x axis when it is at rest. The motion of the string can be described by
the displacement in the y direction. We let u measure this displacement.
Since the displacement depends both on location x along the string that
was displaced and on the time t at which the displacement occured, the
displacement u is a function of t and x; we write u = u(t, x).

We need to make some assumptions about what happens at the ends of
the string. There are many options for how to handle the ends of the string.
For the time being, we assume that we are dealing with one of the following
situations:

Local displacements of an infinite string If we are focused
on the oscillations of a very long string, we might assume
that the displacement is localized to some region of the
string. Mathematically this means that u is defined for all

15



16 CHAPTER 2. THE ONE DIMENSIONAL WAVE EQUATION

�1 < x < 1 and that we are assuming both

u(t, x) ! 0 and
@u

@x
(t, x) ! 0 as x ! ±1.

(2.1) GeneralBC:infinite-string

Periodic displacements of an infinite string If we are fo-
cused on the oscillations of a very long string we might
alternatively assume that the displacement is spatially pe-
riodic with period 2L. Mathematically we can express this
by having u defined for �L  x  L and by assuming that

u(t,�L) = u(t, L) and
@u

@x
(t,�L) =

@u

@x
(t, L). (2.2) GeneralBC:periodic

The condition (2.2) is a called the periodic boundary
conditions.

Finite string with fixed endpoints Another physically inter-
esting situation is where the string has finite length L and
the endpoints of the string are fixed. Mathematically we
express this by having u defined for 0  x  L and assum-
ing

u(t, 0) = 0 and u(t, L) = 0. (2.3) GeneralBC:Dirichlet

The condition (2.3) is called theDirichlet boundary con-
dition.

Finite string with reflective endpoints Finally, we might as-
sume that the string has finite length L and that the end-
points are “reflective” in the sense that the slope of the
displacement is zero at endpoints. Mathematically we ex-
press this by having u defined for 0  x  L and assuming

@u

@x
(t, 0) = 0 and

@u

@x
(t, L) = 0. (2.4) GeneralBC:Neumann

The condition (2.4) is called the Neumann boundary
condition.

Since the conditions above are imposed at the endpoints of the spatial do-
main, these conditions are usually called boundary conditions.

Assuming that the string satisfies one of the four boundary conditions
above, we now define some sort of “energy” for the string. First, we focus on
kinetic energy. Let’s assume that the string has a linear mass density that
is constant in x, even as the string moves and stretches. (Think about how
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reasonable this is. . . it’s actually better than it might first appear!) Call the
linear mass density ⇢. The little piece of string at location x has mass ⇢ dx
and vertical velocity @u

@t . It makes sense that the “kinetic energy” at that

point would be 1
2⇢

�
@u
@t

�2
dx and that the total kinetic energy of the string

would be

K =
1

2
⇢

Z

string

✓
@u

@t

◆2

dx.

Note that ⇢ is the “linear-densitized” version of the constant m appearing
in the simple harmonic oscillator.

Let’s now think about “potential energy,” which is supposed to measure
the “energy” associated with the location of the string. That is, we just saw
a picture of a string at some time, we should be able to compute the potential
energy without knowing anything about the velocity at that time. Another
way to think about potential energy is this: Suppose that the string is being
held in some physical configuration. To what extent would the fact that the
string is in that configuration lead to physical motion (and, perhaps, kinetic
energy) if it was suddenly released?

If the string started out lying on the x axis, we would not expect any
motion to suddenly emerge, so we would like that configuration to have zero
potential energy. Likewise, if the string–endpoints and all–was just shifted
up by some fixed amount, then we again would not expect any motion. Thus
we want to assign zero potential energy to sections of the string which are
described by u being constant in x.

On the other hand, if initially there is a part of the string is bent steeply,
then we expect there to be quite a bit of motion when the string is released.
This motivates us to define the potential energy to be

V =
1

2
k

Z

string

✓
@u

@x

◆2

dx.

Notice that in order for K and V to have the same units, it must be that k
has units of (mass)/(time)2(length), which is a linear-densitized version of
the corresponding constant for the simple harmonic oscillator.

The total energy E = K + V is thus

E = ⇢
1

2

Z

string

(✓
@u

@t

◆2

+ c2
✓
@u

@x

◆2
)
dx,

where the constant c =
p

k/⇢ has units of (length)/(time); below we see
how to interpret c as a velocity.
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We now impose the condition that E be constant in time, which requires
that

0 = ⇢

Z

string

⇢
@u

@t

@2u

@t2
+ c2

@u

@x

@

@x


@u

@t

��
dx. (2.5) PreDeriveWave-1

Integrating by parts we see that

Z

string

@u

@x

@

@x

✓
@u

@t

◆
dx =


@u

@x

@u

@t

�

endpoints

�
Z

string

@2u

@x2
@u

@t
dx. (2.6) PreWave-IBP

Notice that any of the four conditions (2.1)–(2.2)–(2.3)–(2.4) imply that
the “endpoints” term vanishes; see Exercise 2.1.1. Thus (4.1) becomes

0 = ⇢

Z

string

@u

@t

✓
@2u

@t2
� c2

@2u

@x2

◆
dx.

Since we do not want to restrict the velocity @u
@t , we conclude that in order

to have energy conserved we must have

@2u

@t2
� c2

@2u

@x2
= 0 (2.7) PreWave

at each time t and location x.
Equation (4.3) is called the (one-dimensional) wave equation. So-

lutions to the wave equation must also satisfy the one of the conditions
(2.1)–(2.2)–(2.3)–(2.4) in order to describe the amplitude of an oscillating
string.

exercise:verify-boundary-term-vanishes Exercise 2.1.1. For each of the four possible endpoint assumptions, care-
fully explain why the “endpoints” term in (4.2) vanishes.

2.2 Putting the wave in the wave equation

In the previous section we gave a derivation of the wave equation. In this
section we want to gain some understanding of the ways in which the equa-
tion does, in fact, describe phenomena we regard as being “wave-like.” This
is a bit more di�cult that it might first seem because there are many phe-
nomena which might be described as “wave-like.” (For a more thorough
introduction to wave-like equations, see Roger Knobel’s excellent book An
introduction to the Mathematical Theory of Waves, published by the AMS.)

One way to characterize waves is to require that “disturbances or signals
propagate at some finite speed.” Suppose � : R ! R is a twice-di↵erentiable
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function such that �(z) ! 0 and �0(z) ! 0 as z ! 1. Then (see Exercise
2.2.1) the function u(t, x) = �(x � ct) is a solution to the wave equation
(4.3) satisfying condition (2.1). Such a solution to the wave equation is
called a traveling wave because it is comprised of a fixed displacement
profile (given by �) traveling along the x axis at velocity c. • To do: put in Desmos links as

well

Example 2.2.1

Set c = 1 and consider the function �(z) = e�z2 . The correspond-
ing traveling wave u(t, x) = �(x � t) can be animated in Sage by the
following code:

phi(x) = exp(-x^2)
a = animate ([phi(x-t) for t in srange (-6,6,0.5)], xmin

=-5, xmax=5, ymax =1.2, ymin=-.1, figsize =[4 ,2])
a.show()

Alternatively, see this link.

Not all solutions to (4.3) are traveling waves. For example, let ! be any
positive constant. Then the function

u(t, x) = cos(!t) cos(
!

c
x) (2.8) FirstStandingWave

is a solution to (4.3). The function in (2.8) is called a standing wave
because it takes the form

u(t, x) = A(t) (x), (2.9)

which we interpret as being comprised of a spatial shape  (x) that is scaled
by amplitude function A(t) as time evolves.

Example 2.2.2

Set c = 1 and ! = 1. The standing wave (2.8) can be animated in Sage
with the following code:

a = animate ([cos(x)*cos(t) for t in srange (0,2*pi ,0.3)],
xmin=-3*pi , xmax =3*pi, ymax =1.2, ymin = -1.2, figsize
=[4 ,2])

a.show()

Alternatively, see this link.
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HW:verify-traveling-wave Exercise 2.2.1. Suppose � : R ! R is a twice-di↵erentiable function such
that �(z) ! 0 and �0(z) ! 0 as z ! 1. Show that the functions

uleft(t, x) = �(x+ ct)

uright(t, x) = �(x� ct)

are solutions to (4.3). Describe how these functions behave in time.

Ex:wave-equation-is-linear Exercise 2.2.2.

1. Show that the wave equation (4.3) is linear. That is, suppose both u1
and u2 are solutions. Show that ↵u1 + �u2 is also a solution for any
constants ↵,�.

2. Let’s illustrate the linearity of (4.3) with an example. With c = 1
explain why both

u1(t, x) =
2

1 + (x+ t)4

u2(t, x) =
1p

1 + (x� t)2

are solutions. Then explain why u(t, x) = u1(t, x) + u2(t, x) is also a
solution. Have Sage animate this solution for you. Explain what you
observe.

3. One can physically interpret the superposition principle as indicating
that “individual waves do not interact.” Do “real world waves” that
behave this way? Discuss several di↵erent types of examples (water
waves, sound waves, light, etc.).

Ex:TowardsStandingWaves Exercise 2.2.3. This exercise connects the ideas of standing waves and
traveling waves.

For simplicity, we set c = 1. Consider the solution

u(t, x) = cos (x� t) + ↵ cos (x+ t),

where ↵ is some parameter.

1. First, show that when ↵ = 0 the solution is simply a traveling cosine
wave. Use the following Sage code to animate the solution:
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var(’x’)
a=0.0
waveplot = animate ([cos(x-t) + a*cos(x+t) for t in srange

(0,6,0.5)],xmin=-2*pi , xmax =2*pi , ymax=2, ymin = -2,
figsize =[4 ,2])

waveplot.show()

2. Now consider the case when ↵ = 0.1. Explain how to interpret the
the solution as the sum of two traveling waves, and explain the visual
e↵ect of the second wave.

3. Repeat for ↵ = 0.2, 0.3, 0.4, . . . , 0.9. What happens as you slowly in-
crease ↵?

4. Now set ↵ = 1. What is the behavior of the solution?

5. Use the trigonometric identity for the sum of cosines to show that when
↵ = 1 the solution can be written

u(t, x) = 2 cos (t) cos (x). (2.10) PreStandingWave

Explain how to interpret this as a standing wave.

6. What can you conclude from this experiment?

2.3 A systematic look at standing waves

sec:standing-waves

Mathematically, standing wave solutions to (4.3) are somewhat analogous
to eigensolutions of linear ODEs: both take the form

(function of t)(spatial object).

In the ODE case, the “spatial object” is a vector. In the case of a standing
wave, the spatial object is a function of the spatial variable x. In Part 2 of
this course, we make the analogy between vectors and functions of spatial
variables much more concrete.

For ODEs we found that we were able to construct complete, indepen-
dent collections of eigensolutions. Our plan for studying the wave equation
is to construct complete, independent collections of standing wave solutions.
To do this, we need to make a more systematic analysis of standing wave
solutions to (4.3).
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For simplicity, we set the constant c equal to 1, so that the wave equation
is

@2u

@t2
=
@2u

@x2
. (2.11) 1D-wave

Standing wave solutions take the form

u(t, x) = A(t) (x). (2.12) 1D-standing-ansatz

Inserting (2.12) in to (2.11) we find that

1

A

d2A

dt2| {z }
|

=
1

 

d2 

dx2| {z }
~

.

We now make an important observation: the quantity | is a function of t
only, while the quantity ~ is a function of x only. Thus

d

dt
[|] =

d

dt
[~] = 0,

which means that | is a constant and, since | = ~, that ~ is equal to that
same constant. We call the constant �. Therefore we can construct standing
wave solutions to (2.11) of the form (2.12) by solving the ODEs

d2A

dt2
= �A and

d2 

dx2
= � (2.13) 1D-first-separation

for some constant �.
This is good news, because we already know how to solve ODEs like the

ones in (2.13). In fact, we can solve them for any value of �. For example,
suppose � = 4. Then we can take A(t) = e�2t and  (x) = e2x. The resulting
solution is

u(t, x) = e�2te2x = e2(x�t), (2.14) 1D-exp-traveling-wave

which we can interpret as a right-moving traveling wave solution based on
the shape �(z) = e2z.

However, the solution (2.14) does not satisfy any of the boundary con-
ditions discussed in §2.1. Thus if we want our standing wave solutions to
describe one of those situations, we must find a way to incorporate those
conditions in to the di↵erential equations (2.13). Since we want the bound-
ary conditions to hold at all times t, the easiest thing to do is to require
that  satisfy the corresponding boundary condition. In particular,
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• For modeling local displacements of an infinite string, the function  
is defined for �1 < x < 1 and the boundary condition (2.1) becomes

 (x) ! 0 and  0(x) ! 0 as x ! ±1. (2.15) BC:infinite-string

• For modeling periodic displacements of an infinite string, the function
 is defined for �L  x  L and the boundary condition (2.2) becomes

 (�L) =  (L) and  0(�L) =  0(L). (2.16) BC:periodic

We call (2.16) the periodic boundary condition.

• For modeling a finite string with fixed endpoints, the function  is
defined for 0  x  L and the boundary condition (2.3) becomes

 (0) = 0 and  (L) = 0. (2.17) BC:Dirichlet

We call (2.17) the Dirichlet boundary condition.

• For modeling a finite string with reflective endpoints, the function  
is defined for 0  x  L and the boundary condition (2.4) becomes

 0(0) = 0 and  0(L) = 0. (2.18) BC:Neumann

We call (2.18) the Neumann boundary condition.

In order to keep our discussion simple, let’s focus on the case of the
Dirichlet boundary condition. So we want to find functions A and  that
satisfy (2.13) and (2.17) for some constant �. Since the boundary condition
is a condition on  , it makes sense to first solve

d2 

dx2
= � ,  (0) = 0,  (L) = 0, (2.19) 1D:Dirichlet-bvp

and then solve for the function A.
The combination of the di↵erential equation and boundary condition in

(2.19) is called a boundary value problem, given the acronym BVP. Our
perspective is to view (2.19) as an eigenvalue problem, analogous to the
eigenvalue problems we encountered in the ODEs course. Most abstractly,
an eigenvalue problem is an equation of the form

[operation](object) = (number)(object). (2.20)

In the ODEs course, the “object” was a vector and the “operation” was
multiplication by a matrix. For the wave equation, the “object” is the
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function  and the “operation” is the process of taking two derivatives.
Due to this analogy we refer to possible values of � as eigenvalues. (In fact,
this is why we chose the letter �!) We refer to the functions  that satisfy
(2.19) as eigenfunctions.

The boundary condition in the BVP restrict which eigenvalues � are
possible. To see this, we multiply the di↵erential equation in (2.19) by  
and integrate to obtain

Z L

0
 (x)� (x)dx =

Z L

0
 (x)

d2 

dx2
(x) dx

=


 (x)

d 

dx
(x)

�L

0

�
Z L

0

✓
d 

dx
(x)

◆2

dx,

where in the second line we have used integration by parts. Notice that the
Dirichlet boundary condition implies that the boundary term vanishes, and
thus

�

Z L

0
( (x))2 dx

| {z }
�0

= �
Z L

0

✓
d 

dx
(x)

◆2

dx

| {z }
�0

. (2.21) 1D-eigenvalue-has-sign

Since both of the integrals are non-negative, it must be the case that �  0.
The identity (2.21) also shows that if � = 0 then d 

dx = 0, which im-
plies that  is constant. However, the only constant function satisfying
the Dirichlet boundary condition is the zero function. Thus in order to get
nonzero standing wave solutions we must have � < 0.

Since � < 0 we can write � = �!2 for some positive constant !. Making
this substitution in (2.19) yields

d2 

dx2
= �!2 ,  (0) = 0  (L) = 0.

From our di↵erential equations course we know that solutions to this equa-
tion are linear combinations of

cos(!x) and sin(!x). (2.22) 1D-basic-shapes

Since cos(0) = 1, the function cos(!x) cannot the boundary condition
at x = 0. Thus we rule out this solution.

The function sin(!x) automatically satisfies the boundary condition at
x = 0. In order to satisfy the boundary condition at x = L we must have
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sin(!L) = 0. This means that !L must be a multiple of ⇡. This gives us an
infinite list of possible values for !:

!1 =
⇡

L
, !2 =

2⇡

L
, . . . , !k =

k⇡

L
, . . .

and corresponding infinite list of possible values for �1,�2, . . . given by the
formula

�k = �
✓
k⇡

L

◆
.

For each �k there is a solution  k to the boundary value problem (2.19):

 k(x) = sin(!kx) = sin

✓
k⇡

L
x

◆
. (2.23) 1D:Dirichlet-eigenfunctions

Finally, in order to construct standing wave solutions, we need to find
the corresponding functions A(t). For each k = 1, 2, 3, . . . we need a function
Ak satisfying

d2Ak

dt2
= �!2

kAk. (2.24) 1D:coefficient-ode

From the ODEs course, we know that the general solution to (2.24) is

Ak = ak cos(!kt) + bk sin(!kt),

where ak and bk are constants. The result is that we end up with an infinite
list of standing wave solutions. For k = 1, 2, 3, . . . we have the solution

uk(t, x) = ak cos(!kt) sin(!kx) + bk sin(!kt) sin(!kx), where !k =
k⇡

L
.

Alternatively, we see that for any k = 1, 2, 3 . . . the functions

cos

✓
k⇡

L
t

◆
sin

✓
k⇡

L
x

◆
and sin

✓
k⇡

L
t

◆
sin

✓
k⇡

L
x

◆
(2.25) Dirichlet-eigensolutions

are each solutions.
We have succeeded in constructing a list of all possible standing wave

solutions to the wave equation that also satisfy the Dirichlet boundary con-
dition. We refer to these solutions as eigensolutions because they are
constructed from the eigenfunctions  k that satisfy the BVP (2.19).

Before we close this section, we make two remarks about boundary con-
ditions
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• Notice that imposing the boundary condition forced the eigenvalues �
to all be negative. We demonstrated this using integration-by-parts.
The fact that the eigenvalues are negative is what led to the standing
wave solutions to be oscillatory: if � > 0, then we could not get cosine
or sine functions for A(t). This is a more general phenomenon that
will show up again.

• Notice also that imposing boundary conditions led to there being a
discrete list of possible eigenvalues. (Before we imposed the boundary
conditions, any value of � was admissible!) Thus there is a certain
sense in which boundary conditions lead to the discretization of possi-
ble solutions. In physics, this phenomenon is related to the concept of
“quantization.” In mathematics, such a countable list of eigenvalues
is called a “discrete spectrum.”

HW:periodic-eigenfunctions-first-pass Exercise 2.3.1.

1. Suppose that  is a function defined on [�L,L] satisfying

d2 

dx2
= � (2.26) 1D-periodic-psi-eqn

and the periodic boundary condition (2.16). Use integration by parts
to show that � = �!2 for some real number !.

2. Find the infinite list of all solutions to (2.26) satisfying the periodic
boundary conditions (2.16). (You should, in fact, get two infinite lists
– one involving cosines and one involving sines.)

3. Find all standing wave solutions to (2.11) that satisfy the periodic
boundary conditions (2.2).

4. Suppose now that we are willing to work with complex numbers in our
solutions to the wave equation. Show that the list of complex solutions
to (2.26)–(2.16) is

 k(x) = ei
k⇡
L x, k = . . . , -2, -1, 0, 1, 2, . . .

What are the corresponding eigensolutions to the wave equation?

Exercise 2.3.2. Consider the Dirichlet standing wave solutions in (2.25).

1. Since these are solutions to the wave equation, they should have con-
stant energy. Compute the energy of the kth solution. Express the
energy in terms of the frequency !k at which the standing wave oscil-
lates.
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2. What is the relationship between the (relative) size of the frequency
of oscillation and the size of the energy? Express your answer in the
form As the frequency ! grows larger, the energy tends to . Etc.

3. What is the relationship between the frequency of the oscillation and
the spatial scale of the solution? Express your answer in the form
When the frequency ! of the standing wave is large, the spatial scale
of the wave tends to . Etc.

4. Summarize the connections/relationships between energy, length scale,
and frequency of oscillation.

Exercise 2.3.3. In Exercise 2.2.2 you showed that the wave equation is
linear, and thus that we can use the superposition principle to generate new
solutions from old ones. In this exercise you get to explore this in the case
that L = ⇡ and Dirichlet boundary conditions are enforced.

1. Both

cos(t) sin(x) and cos(4t) sin(4x)

are solutions. Spend some time playing around with di↵erent linear
combinations of these solutions. You might it helpful to make use of
the following: https://www.desmos.com/calculator/ndrvima2l2

2. Check out this solution: https://www.desmos.com/calculator/yppajxal4f
What’s happening here?

2.4 The initial boundary value problem

section:1D-IBVP • rewrite?

In the di↵erential equations course, we saw that that the eigensolution ap-
proach to studying linear di↵erential equations involved three parts:

• Construct a independent collection of eigensolutions. By “in-
dependent” we mean that no one of the eigensolutions can be expressed
as a linear combination of the others.

• Show that collection of eigensolutions is complete, meaning
that any solution can be constructed as a linear combination of eigen-
solutions. This relies on the superposition principle.

• Understand the behavior of general solutions by understand-

ing the behavior of the eigensolutions.
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In the previous section we constructed a list of eigensolutions to the wave
equation with Dirichlet boundary conditions, the standing wave solutions in
(2.25). Thus we are left with the following questions:

• Is the collection of eigensolutions (2.25) complete? Are these functions
independent from one another?

• Can all solutions to the wave equation (satisfying the Dirichlet bound-
ary condition) be constructed as a linear combination of these eigen-
solutions?

• What do these eigensolutions tell us about the behavior of general
solutions of the wave equation (satisfying the Dirichlet boundary con-
dition)?

In order to address these questions we introduce the concept of the “ini-
tial boundary value problem.” This concept is motivated by the initial value
problem studied in the ODE course.

Recall that a second-order ODE of the form1

a
d2u

dt2
+ b

du

dt
+ cu = f

requires two initial conditions, the initial value u0 = u(0) and the initial ve-
locity v0 = u0(0). The fundamental theorem of ODEs implies that once these
initial values are specified, there exists exactly one corresponding solution
to the ODE.

Since the wave equation involves two time derivatives, it is reasonable
to expect that one should be able to similarly specify an initial value and
an initial velocity. However, if u(t, x) is a solution to the wave equation, the
value at t = 0 is a function u0(x) = u(0, x). Similarly, the initial velocity for
the wave equation is a function v0(x) = @u

@t (0, x). The wave equation also
has the additional complication that we must satisfy one of the boundary
conditions described in §2.1. Thus for the wave equation we can pose the
following initial boundary value problem:

Consider one of the boundary conditions (2.1), (2.2), (2.3), or
(2.4) and corresponding spatial domain ⌦. Suppose u0 and v0
are functions defined on the spatial domain ⌦. A function u =
u(t, x), defined for t 2 [0, T ] and x 2 ⌦ is a solution to the
corresponding initial boundary value problem (IBVP) if

• u satisfies the given boundary condition,

1Assume, for simplicity, that a, b, c are di↵erentiable functions with a(0) 6= 0.
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• u satisfies the wave equation (2.11), and

• u satisfies the initial conditions

u(0, x) = u0(x) and
@u

@t
(0, x) = v0(x). (2.27) 1D-IC

Remark 2.4.1. Let ⌦̊ denote the interior of the spatial domain ⌦. Techni-
cally, we only require that the wave equation (2.11) hold for t 2 (0, T ) and
x 2 ⌦̊, only require that the initial condition (2.27) hold for x 2 ⌦̊, and only
require that the boundary condition hold for t > 0.

Let’s focus our attention on the Dirichlet initial boundary value problem,
by which we mean the IBVP with Dirichlet boundary condition (2.3) on
domain ⌦ = [0, L]. Our plan for constructing solutions to the Dirichlet
IBVP is to consider linear combinations of the eigensolutions (2.25). Thus
we fix functions u0 and v0 and seek a solution to the IBVP of the form

u(t, x) =
1X

k=1

ak cos

✓
k⇡

L
t

◆
sin

✓
k⇡

L
x

◆

+
1X

k=1

bk sin

✓
k⇡

L
t

◆
sin

✓
k⇡

L
x

◆
, (2.28) 1D-ansatz

where ak and bk are some unknown constants. By construction, functions
of this form satisfy the wave equation and satisfy the Dirichlet boundary
condition. Thus we have two questions to address:

• Can we choose the constants ak, bk so that the initial conditions are
satisfied?

• Do we need to worry about these infinite sums? For example, do they
converge?

If we evaluate (2.28) at t = 0 we see that in order for the first initial
condition to be satisfied we must have

u0(x) =
1X

k=1

ak sin

✓
k⇡

L
x

◆
.

Similarly, if we apply @t to (2.28) and then evaluate at t = 0 we see that in
order for the second initial condition to be satisfied we need

v0(x) =
1X

k=1

bk
k⇡

L
sin

✓
k⇡

L
x

◆
.

Thus we see that our plan for obtaining solutions to the Dirichlet IBVP of
the form (2.28) rests on begin able to answer the following question:
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Given a function f defined on [0, L], can we choose constants ak
so that the functions fn, defined by

fn(x) =
nX

k=1

ak l(x)

converge to f as n ! 1?

This question was addressed in 1822 by mathematician Jean-Baptiste Joseph
Fourier, who gave an a�rmative answer in his book Théorie analytique de
la chaleur (Analytic theory of heat). (It would, however, take the develop-
ment of more mathematics theory in order to put Fourier’s work on solid
mathematical footing). In the next chapter we develop the theory needed to
understand and use Fourier’s work. Once we have developed these tools, we
return to the initial boundary value problem for the one-dimensional wave
equation.

• exercise needed

Exercise 2.4.1.

Exercise 2.4.2. In this exercise you address the uniqueness of solutions to
the Dirichlet IBVP.

1. Suppose u is a function of time t and spatial location x 2 [0, L]. Mo-
tivated by the discussion in §2.1, we define the energy at time t of u
by

E[u](t) =
1

2

Z L

0

(✓
@u

@t
(t, x)

◆2

+

✓
@u

@x
(t, x)

◆2
)

dx.

Suppose that u is a twice di↵erentiable function such that at each time t
it satisfies the Dirichlet boundary condition. Explain why if E[u](t) = 0
then u(t, x) = 0 for each x 2 [0, L].

2. Suppose that u is a twice di↵erentiable function such that at each time
t it satisfies the wave equation and the Dirichlet boundary condition.
Show that

d

dt
E[u](t) = 0.

3. Suppose that u is a twice di↵erentiable function such that at each time
t it satisfies the wave equation, the Dirichlet boundary condition, and
has initial conditions u0 = 0, v0 = 0. Show that E[u](t) = 0 for all
t > 0. Explain why this implies that u = 0.
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4. Suppose now that ǔ and bu are two solutions to the Dirichlet initial
boundary value problem with the same initial conditions. Show that the
function u = ǔ�bu satisfies the Dirichlet initial boundary value problem
with initial conditions u0 = 0, v0 = 0. Explain how to conclude that
ǔ = bu and therefore that solutions to the Dirichlet IBVP are unique.


