
Lecture 25

Constant coe�cient
homogeneous equations

Our plan for studying oscillator-type equations is the following. First, in this
section, we study equations of the form

a
d2y

dt2
+ b

dy

dt
+ cy = 0, (25.1) generic-homogeneous

where a, b, c are constants. (We assume that a 6= 0 because otherwise we have a
first-order equation.) Notice that the generic oscillator model (24.3) takes this
form if the forcing is set to zero. In subsequent sections we introduce forcing
terms on the right hand side.

Equations of the form (25.1) are called constant coe�cient because the
coe�cients are constant, and are called homogeneous because the right side
of the equation is zero.

One way to study the equation (25.1) is to express it as the first order system

dy

dt
= v

dv

dt
= � c

a
y � b

a
v.

This can also be written in vector-matrix form as

d

dt
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The eigenvalues of this matrix are given by

��
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� b

a
� �

◆
+

c

a
= 0,

which simplifies to

a�2 + b�+ c = 0. (25.2) hom:quadratic
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168 LECTURE 25. HOMOGENEOUS EQUATIONS

Suppose now that � is a solution to (25.2). The corresponding eigenvector must
satisfy ✓
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� c
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� b
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◆
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F
|

◆
.

In particular, we must have
| = �F

and therefore we may choose the eigenvector associated to � to be
✓
1
�

◆
.

The associated eigensolution to the first order system is

e�t
✓
1
�

◆
.

From this we conclude the following: If � is a solution to (25.2), then y(t) = e�t

is a solution to (25.1).
In fact, we could have learned this a much easier way. If we plug the function

y(t) = e�t in to the equation (25.1), we obtain

e�t
�
a�2 + b�+ c

�
= 0. (25.3)

Since e�t is not the zero function, we again see that e�t is a solution to (25.1)
precisely when � solves (25.2).

We now know how to construct “simple” solutions to (25.1). In order to
use this to construct a general solution, we need to know that the superposition
principle works for the equation (25.1). By direct computation, we can verify
the following: If y1(t) and y2(t) are solutions, then so is y(t) = ↵y1(t) + �y2(t)
for any constants ↵,�; see the exercises.

Since we now that the superposition principle works for the equation (25.1)
we can now proceed as follows. If (25.2) has two real solutions �1 and �2, then
we know that both

y1(t) = e�1t and y2(t) = e�2t

are solutions. Using the superposition principle, we find that the generic solution
to (25.1) is

y(t) = ↵e�1t + �e�2t.

If, however, the equation (25.2) has complex solutions �± = a± bi then we
can use the superposition principle to conclude that

y1(t) = eat cos(bt) and y2(t) = eat sin(bt)

are solutions. From this we deduce that a general solution to (25.1) is

y(t) = ↵eat cos(bt) + �eat sin(bt);

see the exercises for details.
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Example 25.1. Let’s find the general solution to the equation

d2y

dt2
+ 5

dy

dt
+ 6y = 0.

We see that e�t is a solution when

0 = �2 + 5�+ 6 = (�+ 2)(�+ 3).

Thus both e�2t and e�3t are solutions, and a general solution is

y(t) = ↵e�2t + �e�3t.

Notice that y(t) decays to zero without any oscillation as t ! 1.
While we can easily plot typical solutions y(t) on the t–y axis, we can also

plot solutions in the y–v phase plane. Setting v = dy

dt
we have
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From this we see conclude that the phase portrait has a sink-type equilibrium at
(y, v) = (0, 0).

Example 25.2. Let’s find the general solution to

d2y

dt2
+

dy

dt
+ 6y = 0.

We see that e�t is a solution when

0 = �2 + �+ 6,

which occurs when

� = �1

2
±

p
23

2
i.

Thus the general solution is

y(t) = ↵e�t/2 cos

 p
23

2
t

!
+ �e�t/2 sin

 p
23

2
t

!
.

Notice that these solutions oscillate with exponentially decaying amplitude.
We now want to plot the solution in phase space. Since the eigenvalues � are

complex with negative real part, the equilibrium at zero is a spiral sink. In order
to determine the direction, we observe that v > 0 means that y is increasing.
Thus the spiral is clockwise.

If we wanted an exact formula for the trajectories in phase space, we can
compute v = dy

dt
, from which we deduce that
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We conclude this section with some remarks about the superposition prin-
ciple and the concept of linearity. We know that we can write (25.1) as a first
order system. Thus one way to define what it means for a second order equa-
tion to be linear would be that the associated first order system is linear. This
is a fine definition, but it is not the standard one. Rather, we make use of
the superposition principle directly and say that (25.1) is defined to be lin-
ear because it has the property that if y1(t) and y2(t) are solutions, then so is
y(t) = ↵y1(t) + �y2(t) for any constants ↵,�.! put the superposition principle

exercises in to the lecture

Exercise 25.1. Verify that the superposition principle works for the equation
(25.1) as follows. Assume that y1(t) and y2(t) are solutions. Show by direct
computation that this implies that y(t) = ↵y1(t) + �y2(t) is a solution for any
constants ↵,�.

Exercise 25.2. Suppose e�t is a solution to (25.1) with � = a+ bi. Show how
to use this in order to conclude that

y1(t) = eat cos(bt) and y2(t) = eat sin(bt)

are solutions.

SuperSuperSuper Exercise 25.3. Consider the second order di↵erential equation

d2y

dt2
+ 5

dy

dt
+ 6y = 0.

1. Find the general solution to this di↵erential equation.

2. Solve the initial value problem

d2y

dt2
+ 5

dy

dt
+ 6y = 0, y(0) = 0, y0(0) = 1.

ex:GO-practice Exercise 25.4. Find the general solution of the following equations:

1.
d2y

dt2
+ !2y = 0;

2.
d2y

dt2
+ 3

dy

dt
+ 2y = 0;

3.
d2y

dt2
+ 4

dy

dt
= 0;

4.
d2y

dt2
+ 2

dy

dt
+ 2y = 0;

5.
d2y

dt2
+

dy

dt
+ y = 0.
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ProveSecondOrderSuperposition Exercise 25.5. Show that the superposition principle also holds for non-constant
coe�cient homogeneous linear equations, which take the form

a(t)
d2y

dt2
+ b(t)

dy

dt
+ c(t)y = 0

for functions a, b, c.

GuessTheForm Exercise 25.6. Consider the di↵erential equation

t2
d2y

dt2
� 3t

dy

dt
+ 3y = 0.

1. Find those values of ↵ for which the function y(t) = t↵ solves the di↵er-
ential equation.

2. Use the superposition principle from Exercise 25.5 to solve the IVP:

t2
d2y

dt2
� 3t

dy

dt
+ 3y = 0, y(1) = 2, y0(1) = 4.


