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4.3 Superposition Principles

We now make use of vectors and matrices to study systems of linear systems
of equations. Throughout, it is important to be able to translate seamlessly
between writing systems as two independent equations and in vector-matrix
form:

dy
1

dt
= ay

1

+ by
2

dy
2

dt
= cy

1

+ dy
2

$ d

dt

✓
y
1

y
2

◆
=

✓
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c d

◆✓
y
1

y
2

◆
. (4.3.1)

Activity 4.3.1. Write the system

dy
1

dt
= y

2

dy
2

dt
= y

1

+ y
2

in vector-matrix notation.

We now consider the problem of constructing solutions to linear systems
of equations. In order to motivate our approach, consider the following
activity.

Activity 4.3.2. Consider the equation

d

dt

✓
y
1

y
2

◆
=

✓
5 2
0 2

◆✓
y
1

y
2

◆

1. Show that Y
1

(t) = e5t
✓
1
0

◆
is a solution.

2. Show that Y
2

(t) = e2t
✓

2
�3

◆
is a solution.

3. Show that Y (t) = 3Y
1

(t) + 7Y
2

(t) is a solution.

4. Explain why Y (t) = ↵Y
1

(t) + �Y
2

(t).

5. Show that Y
1

(0) and Y
2

(0) are independent. Find ↵ and � such that

↵Y
1

(0) + �Y
2

(0) =

✓
3
5

◆
.

6. With ↵ and � as in the previous part, what initial value problem does
Y (t) = ↵Y

1

(t) + �Y
2

(t) solve?
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Through Activity 4.3.2 we learn the following important lesson:

Theorem (The Superposition Principle). Suppose that Y
1

(t) and Y
2

(t) are
solutions to a linear equation. Then any linear combination ↵Y

1

(t)+�Y
2

(t)
is also a solution to the linear equation.

As we saw in Activity 4.3.2, the superposition principle allows us to
formulate a recipe for solving the initial value problem

d

dt
Y =

✓
a b
c d

◆
Y (0) =

✓~
F

◆
. (4.3.2)

The recipe is as follows:

1. Find two independent solutions Y
1

(t) and Y
2

(t) to the di↵erential equa-
tion.

2. Choose constants ↵ and � so that

↵Y
1

(0) + �Y
2

(0) =

✓~
F

◆
.

3. Then the function
Y (t) = ↵Y

1

(t) + �Y
2

(t)

is the unique solution to the linear IVP (4.3.2).

We make some comments on this procedure:

1. The recipe essentially puts all the work in to the first step. At this
stage we don’t know any systematic methods for actually constructing
any solutions to the equation at all. So we still have our work cut
out for us – we need to figure out how to get our hands on these two
independent solutions. That’s precisely the work we turn to in the
next section.

Even though the first step leaves us with work to do, the recipe is still
very useful: Finding two solutions is a much simpler task than finding
all solutions.

2. If we don’t fix the constants ↵ and �, then the linear combination

Y (t) = ↵Y
1

(t) + �Y
2

(t)

is called a general solution to the di↵erential equation. Once we have
a general solution, then we can easily address the initial value problem
by choosing the constants in order to satisfy the initial condition.
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Activity 4.3.3. Consider the initial value problem

d

dt
Y =

✓
2 3
7 6

◆
Y Y (0) =

✓
2
5

◆
.

1. Verify that

Y
1

(t) = e�t

✓�1
1

◆
and Y

2

(t) = e9t
✓
3
7

◆

are solutions to the di↵erential equation.

2. Choose ↵ and � so that

↵Y
1

(0) + �Y
2

(0) =

✓
2
5

◆
.

3. Construct the solution to the IVP.

Exercise 4.3.1. Verify that Y
1

(t) = e6t
✓
2
5

◆
and Y

2

(t) = e�t

✓
1
�1

◆
are

both solutions of the system equations

d

dt
Y =

✓
1 2
5 4

◆
Y.

Exercise 4.3.2. Consider the system of equations

dY

dt
=

✓
2 1
1 2

◆
Y.

1. Verify that Y
1

(t) = e3t
✓
1
1

◆
and Y

2

(t) = et
✓

1
�1

◆
are both solutions

of this system equations.

2. By the Superposition Principle you now know infinitely many solutions
of the system. What are they?

3. Solve the IVP:

dY

dt
=

✓
2 1
1 2

◆
Y, Y (0) =

✓
1
0

◆
.
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4.4 Eigenstu↵ & straight line solutions

In the previous section we discovered a recipe for constructing solutions to
linear equations. In this section we address the first step of that procedure,
finding two independent solutions Y

1

and Y
2

to our linear system.
To motivate our approach, let’s recall the example appearing in Activity

4.3.2. In that case, we were presented with two solutions:

Y
1

(t) = e5t
✓
1
0

◆
and Y

2

(t) = e2t
✓

2
�3

◆
.

Notice that both of these solutions trace out straight lines in the phase plane;
a plot of them is here:

[graphic needed]

This example motivates an approach to finding solutions: We look for
straight line solutions of the form

Y (t) = s(t)

✓
x
y

◆
, (4.4.1)

where s(t) is some function and x, y are fixed constants. Clearly not all
solutions to linear equations are straight line solutions. But at this stage we
don’t need to construct all solutions – all we need to do is find some pair
of independent solutions. So it makes sense to go looking for solutions that
take a simple form, such as traversing a straight line.

Suppose, therefore, that we are looking for solutions to the linear equa-
tion

d

dt

✓
y
1

y
2

◆
=

✓
a b
c d

◆✓
y
1

y
2

◆
. (4.4.2)

If we plug in a generic straight line function of the form (4.4.1) we find that
we need

s0(t)

✓
x
y

◆
= s(t)

✓
a b
c d

◆✓
x
y

◆
.

We can assume that s(t) is not the zero function (because otherwise we don’t
get an interesting solution) and rewrite this equation as

✓
a b
c d

◆✓
x
y

◆
=

s0(t)

s(t)

✓
x
y

◆
. (4.4.3)
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We now make an interesting observation: The left side of (4.4.3) does not
depend on t: the entries of the matrix are constant and the entries of the
vector are constant. Since the left side is constant in time, the right side
must be as well. Thus we conclude the following: If(4.4.1) is going to be
a straight line solution to (4.4.2), then it must be the case that s0(t)/s(t)
is constant. It is traditional to label this constant with the Greek letter �.
Replacing s0(t)/s(t) by �, the condition (4.4.3) becomes

✓
a b
c d

◆✓
x
y

◆
= �

✓
x
y

◆
, (4.4.4)

together with the condition that

s0(t)

s(t)
= �. (4.4.5)

Notice something amazing: the equation (4.4.4) does not involve any calcu-
lus. . . or even any functions! It is simply an algebraic equation where there
are three unknowns: x, y, and �. In fact, (4.4.4) is really just two equa-
tions with three unknowns. So it seems reasonable that we would be able to
find several solutions. In other words, the prospects of finding straight-line
solutions to (4.4.2) seem rather good.

The discussion in the previous paragraph suggests an approach for find-
ing straight line solutions: First, find

✓
x
y

◆
and �

that satisfy (4.4.4). Second, using that value of �, find a function s(t) that
satisfies (4.4.5). Finally, building our straight line solution using the formula
(4.4.1) that we started with.

Before attempting to execute this procedure to specific examples, it is
worth taking a moment to recall why we are seeking straight line solutions
in the first place. Remember that our goal is to construct a general solution
to (4.4.2) of the form

Y (t) = ↵Y
1

(t) + �Y
2

(t), (4.4.6)

where Y
1

(t) and Y
2

(t) are independent solutions. Our plan is to find Y
1

(t)
and Y

2

(t) that are straight line solutions of the form (4.4.1) by solving (4.4.4)
and (4.4.5). Since in (4.4.6) we will be multiplying Y

1

and Y
2

by arbitrary
constants ↵ and �, we don’t need to worry about including any free constants
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in our scaling solution. This implies that we can take the solution to (4.4.5)
to be simply

s(t) = e�t

and that all the di�cult work involves finding solutions to (4.4.4). Further-
more, since we want Y

1

(t) and Y
2

(t) to be independent, we do not want both
x and y in (4.4.4) to be zero.

We now turn to the problem of finding x, y,� satisfying (4.4.4), where
we require that we don’t have both x and y zero. This problem is called the
eigenvalue problem for the matrix

✓
a b
c d

◆
. (4.4.7)

We write equation (4.4.4) as

(a� �)x+ by = 0

cx+ (d� �)y = 0
$

✓
a� � b
c d� �

◆✓
x
y

◆
=

✓
0
0

◆
. (4.4.8)

We now take a moment to study equations of this form; for convenience,
we set A = a� �, B = b, C = c, D = (d� �) so that the system is

Ax+By = 0

Cx+Dy = 0.
$

✓
A B
C D

◆✓
x
y

◆
=

✓
0
0

◆
. (4.4.9)

By multiplying the first equation by D and the second equation by B, and
then subtracting, we find that

(AD �BC)x = 0.

Similarly by multiplying the first by C and the second by A, and then
subtracting, we find that

(AD �BC)y = 0.

Thus we see that in order to have x and y satisfying (4.4.9) and have at
least one of x or y be not zero, then we must have

AD �BC = 0.

The quantity AD �BC is called the determinant of the matrix
✓
A B
C D

◆
.
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What we have just discovered is that in order to have a non-zero solution
to (4.4.9) the determinant of the matrix must be zero.

We now apply this knowledge to (4.4.8). In order to have one of x or y
not equal to zero, we must have

(a� �)(d� �)� bc = 0. (4.4.10)

The equation (4.4.10) is called the characteristic equation for the matrix
(4.4.7).

The solutions � to the characteristic equation are called the eigenvalues
of the matrix. The eigenvalues are precisely the values of � for which we
can find solutions x, y to (4.4.4) where at least one of x, y is not zero. Thus
in order to construct our straight line solutions, we proceed as follows:

1. Find the eigenvalues � of the matrix appearing in our linear equation.

2. For each eigenvalue �, find a corresponding non-zero vector

✓
x
y

◆

satisfying (4.4.4). This vector is called an eigenvector associated to
eigenvalue �.

3. For each eigenvalue, let s(t) = e�t. Use this function, together with
the associated eigenvector, to construct the straight line solution as in
(4.4.1).

Assuming that this procedure yields two independent straight line so-
lutions, then we are able to construct a general solution to the di↵erential
equation using the superposition principle.

Example 4.4.1. Consider the di↵erential equation

d

dt
Y =

✓
2 1
1 2

◆
Y.

The characteristic equation for the matrix is

(2� �)2 � 1 = 0.

The solutions to the characteristic equation are

�
1

= 3 and �
2

= 1.
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We focus on �
1

= 3. In this case (4.4.4) becomes

✓
2 1
1 2

◆✓
x
y

◆
= 3

✓
x
y

◆
$ 2x+ y = 3x

x+ 2y = 3y

Both of these equations reduce to x = y. Thus we choose our eigenvector to
be ✓

1
1

◆
.

Since s
1

(t) = e�1t = e3t, the corresponding straight line solution is

Y
1

(t) = e3t
✓
1
1

◆
.

We now focus on �
1

= 1. In this case (4.4.4) becomes

✓
2 1
1 2

◆✓
x
y

◆
= 1

✓
x
y

◆
$ 2x+ y = x

x+ 2y = y

Both of these equations reduce to x = �y. Thus we choose our eigenvector
to be ✓�1

1

◆
.

Since s
2

(t) = e�2t = et, the corresponding straight line solution is

Y
2

(t) = et
✓�1

1

◆
.

Since the two functions s
1

and s
2

do not simultaneously vanish, and
since the two eigenvectors are independent, we have have constructed two
independent straight line solutions. Using the superposition principle, we
conclude that a general solution to the di↵erential equation is

Y (t) = ↵e3t
✓
1
1

◆
+ �et

✓�1
1

◆
.

Activity 4.4.1. Find the general solution to the system

d

dt
Y =

✓
4 7
5 6

◆
Y
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Activity 4.4.2. Find the general solution to the system

d

dt
Y =

✓
9 4
5 1

◆
Y

We have now developed an approach for finding solutions to linear sys-
tems of equations. Our plan now is to use this approach in order to under-
stand the phase space diagrams for these systems. In particular, we want
to use the method of “eigenstu↵” to understand the stability of the equi-
librium point at (y

1

, y
2

) = (0, 0). As you will soon see, the stability of this
equilibrium is determined primarily by the eigenvalues of the matrix that
determines the equation. These eigenvalues, of course, are the solutions
to the characteristic equation (4.4.10). Since the characteristic equation is
quadratic, we see that there are a number of cases to consider: the case of
two real solutions, the case of one real solution, and the case of no real solu-
tions. In the next several sections we systematically deal with each of these
cases, beginning with the case when there are two distinct real eigenvalues.

Exercise 4.4.1. Find the eigenvalues and the corresponding eigenvectors
of the following matrices:

1.

✓
4 3
1 2

◆
2.

✓
2 1
1 2

◆
3.

✓
4 5
3 2

◆

Exercise 4.4.2. Find the explicit solution of the following IVP.

dY

dt
=

✓
11 30
�4 �11

◆
Y, Y (0) =

✓
8
�3

◆
.

4.5 Linear theory: Distinct real eigenvalues

In this section we study linear equations

d

dt

✓
y
1

y
2

◆
=

✓
a b
c d

◆✓
y
1

y
2

◆

in the case that the matrix ✓
a b
c d

◆

has two distinct, real eigenvalues �
1

< �
2

. There are three general situations,
and one special situation, that we consider:

• the positive case, when 0 < �
1

< �
2

;
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• the negative case, when �
1

< �
2

< 0;

• the mixed case, when �
1

< 0 < �
2

; and

• the zero case, when either �
1

= 0 or �
2

= 0.

Positive case

In the case that both eigenvalues are positive, both straight line solutions

Y
1

(t) = e�1t

✓~
�
◆

and Y
2

(t) = e�2t

✓}
|
◆

are moving away from the equilibrium at (y
1

, y
2

) = (0, 0) as t increases.
Consequently, the general solution

Y (t) = ↵Y
1

(t) + �Y
2

(t).

moves away from the equilibrium as well. In this situation we say that the
equilibrium (0, 0) is a source; source equilibria are unstable.

We are assuming that 0 < �
1

< �
2

. This means when t � 0 we have
e�1t ⌧ e�2t. Thus as t ! 1 the solution Y

2

(t) dominates and any general
solution Y (t) is moving parallel to Y

2

(t).

Similarly, when t ⌧ 0 we have e�1t � e�2t. Thus as t ! �1, the
solution Y

1

(t) dominates and any general solution Y (t) is moving parallel to
Y
1

(t).

Example 4.5.1. Consider the equation

d

dt
Y =

✓
5 0
17 3

◆
Y.

We compute the eigenvalues to be �
1

= 3 and �
2

= 5. The corresponding
straight line solutions are

Y
1

(t) = e3t
✓
0
1

◆
and Y

2

(t) = e5t
✓
2
17

◆
.

The phase diagram for this system is:
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Here Y
1

(t) (and its negative) appears in blue, while Y
2

(t) (and its negative)
appears in red. Notice that as t ! 1, typical solutions move parallel to
Y
2

(t), while as t ! �1 solutions move parallel to Y
1

.

Negative case

In the case that both eigenvalues are negative, both straight line solutions

Y
1

(t) = e�1t

✓~
�
◆

and Y
2

(t) = e�2t

✓}
|
◆

are moving towards the equilibrium at (y
1

, y
2

) = (0, 0) as t increases. Con-
sequently, the general solution

Y (t) = ↵Y
1

(t) + �Y
2

(t).

moves towards the equilibrium as well. In this situation we say that the
equilibrium (0, 0) is a sink; source equilibria are stable.

We are assuming that �
1

< �
2

< 0. This means when t � 0 we have
e�1t ⌧ e�2t. Thus as t ! 1 the solution Y

2

(t) dominates and any general
solution Y (t) is moving parallel to Y

2

(t).
Similarly, when t ⌧ 0 we have e�1t � e�2t. Thus as t ! �1, the

solution Y
1

(t) dominates and any general solution Y (t) is moving parallel to
Y
1

(t).
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Example 4.5.2. Consider the example

d

dt
Y =

✓�6 �2
4 0

◆
Y.

We compute the straight line solutions to be

Y
1

(t) = e�4t

✓�1
1

◆
and Y

2

(t) = e�2t

✓�1
2

◆
.

The phase diagram for this system is:

Here Y
1

(t) (and its negative) appears in blue, while Y
2

(t) (and its negative)
appears in red. Notice that as t ! 1, typical solutions move parallel to
Y
2

(t), while as t ! �1 solutions move parallel to Y
1

.

Mixed case

We now consider the case where �
1

< 0 < �
2

. In this situation, the straight
line solution

Y
1

(t) = e�1t

✓~
�
◆

is moving towards the equilibrium at (y
1

, y
2

) = (0, 0) as t increases, while
the straight line solution

Y
2

(t) = e�2t

✓}
|
◆
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is moving away from the equilibrium. Consequently, the general solution

Y (t) = ↵Y
1

(t) + �Y
2

(t)

ultimately moves away from the equilibrium point. In this situation we way
that the equilibrium point (0, 0) is a saddle; saddle equilibria are unstable.

Notice that when t � 0 we have e�1t ⇡ 0. Thus as t ! 1, the solution
Y
1

(t) approaches zero and any general solution Y (t) approaches Y
2

(t).
Similarly, when t ⌧ 0 we have e�2t ⇡ 0. Thus as t ! �1, the solution

Y
2

(t) approaches zero and any general solution Y (t) approaches Y
1

(t).

Example 4.5.3. Consider the equation

d

dt
Y =

✓
3 8
3 5

◆
Y.

We compute the straight line solutions to be

Y
1

(t) = e�t

✓�2
1

◆
and Y

2

(t) = e9t
✓
4
3

◆
.

The phase diagram for the system is:

Notice that as t ! 1 all solutions approach either Y
2

(t) or its negative,
which appear in red. As t ! �1, solutions all approach either Y

1

(t) or its
negative, which appear in blue.
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Zero case

There are actually two di↵erent possible ways one eigenvalue could be zero:

�
1

< �
2

= 0 or 0 = �
1

< �
2

.

We treat the second case, and leave the first case as an exercise.

Suppose, then that �
1

= 0 and �
2

> 0. This means that the second
straight line solution takes the form

Y
2

(t) = e�2t

✓~
�
◆
,

while the second straight line solution takes the form

Y
1

(t) =

✓}
|
◆
.

Notice that Y
1

(t) is actually an equilibrium solution! Since any multiple of
Y
1

(t) is also a solution, we see that there are a whole line of equilibrium
solutions in the phase plane.

Since �
2

> 0, we have e�2t ! 1 as t ! 1. This means that as t ! 1,
general solutions move away from the line of equilibrium solutions as t ! 1.

An equilibrium point that lies on a line of other equilibrium points is
called a center manifold point. The study of such points is, unfortunately,
beyond the scope of this course. Thus for our purposes here, we simply “do
not comment” on the stability of the equilibrium point (y

1

, y
2

) = (0, 0) in
this case.

Example 4.5.4. Consider the equation

d

dt
Y =

✓
4 3
8 6

◆
Y.

We compute that the straight line solutions are

Y
1

(t) =

✓�3
4

◆
and Y

2

(t) = e10t
✓
1
2

◆
.

The phase diagram for this equation is the following:
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Notice the line of equilibrium solutions (in blue). Furthermore, all solutions
not on that line are moving parallel to the non-constant solution Y

2

(t).

Exercise 4.5.1. Study each of the following “systems” by addressing the
following questions:

• Find the general solution of the system;

• Draw the phase diagram for the system without any use of “technol-
ogy”. Then check your answer with Sage.

• Discuss the long-term fate of the solutions of the system. Your answer
potentially depends on the initial condition Y (0).

• Discuss the stability of the equilibrium solution Y (t) = 0.

1.
dY

dt
=

✓�2 1
1 �2

◆
Y

2.
dY

dt
=

✓
6 9
3 0

◆
Y ;

3.
dY

dt
=

✓
0.41 0.12
0.12 0.34

◆
Y ;

4.
dY

dt
=

✓
4 15
�2 �7

◆
Y ;

Exercise 4.5.2. A market researcher established that the daily profits of
two competing stores, Ethel’s Knick-knack Heaven and Irma’s Antiques,
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relate to each other as in the system:

dx

dt
= 6x� 2y

dy

dt
= �2x+ 3y

here x(t) denotes the daily profit of Ethel’s store and y(t) denotes the daily
profit of Irma’s store. The time is measured in months.

1. Draw the phase portrait of this system. Use the least amount of com-
putations possible.

2. Use the phase portrait only to discuss the long-term fate of these stores
if their current profits are:

(a) x
0

= $90 and y
0

= $240

(b) x
0

= $100 and y
0

= $120

(c) x
0

= $95 and y
0

= $180

3. Use the phase portrait to find the relationship between the current
profits which would allow both stores to stay in business.

4. Find (analytically) the particular solution of the model corresponding
to the current profits of x

0

= $90 and y
0

= $240. Use the knowledge
of this particular solution to determine when Ethel’s profits are going
to be biggest. How big is this profit?

5. Do the same for Irma’s store and the current profits of x
0

= $95 and y
0

=
$180.

Exercise 4.5.3. Two 100 gallon mixing tanks TANK
1

and TANK
2

are
connected to each other with two pipes, PIPE

1

and PIPE
2

. The tanks
are both completely filled with salty water. The salty water from TANK

1

flows through PIPE
1

to TANK
2

at the (continuous) rate of 8 gal/hr. The salty
water from TANK

2

flows through PIPE
2

to TANK
1

at the (continuous) rate
of 2 gal/hr. The volume of TANK

1

is kept constant by continuous adding of
pure water at the rate of 6 gallons per hour. Likewise, the volume of TANK

2

is kept constant by continuous draining at the rate of 6 gallons per hour.
Everything is always kept ‘perfectly well mixed.’

1. Let s
1

(t) and s
2

(t) be the amount of salt (in pounds, say) in TANK
1

and TANK
2

(respectively). Write a linear system of di↵erential equa-
tions modeling s

1

(t) and s
2

(t).
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2. Draw the phase portrait of this system.

3. What can you say about “the fate of” s
1

and s
2

? Is it true that

lim
t!+1

s
1

(t) = lim
t!+1

s
2

(t) = 0 ?

Which of the two tanks will have more salt in the long run? Does your
answer depend on how much salt the tanks initially had?

4.6 Complex numbers

Suppose we want to find the eigenvalues and eigenvectors of the matrix

✓
1 1
�5 3

◆
. (4.6.1)

The characteristic equation for this matrix is

(1� �)(3� �) + 5 = 0,

which we rewrite as
�2 � 4�+ 8 = 0.

The quadratic formula tells us that the solutions are

�
+

=
4 +

p�16

2
and �� =

4�p�16

2

Unfortunately, these are not real numbers. Thus the linear di↵erential equa-
tion defined by the matrix (4.6.1) does not have straight line solution. How-
ever, this does not mean that all hope for using superposition to understand
the di↵erential equation is lost. Rather, we need to do a bit more work.
That work involves using complex numbers, which is the subject of this
section.

Complex numbers are specifically designed to ensure that all quadratic
equations have solutions. This is accomplished by the inclusion of a new
number i defined by i2 = �1. A complex number is defined to be a
number of the form

a+ bi,

where both a and b are real numbers. The number a is called the real part
of a + bi and the number b is called the imaginary part of a + bi. Note
that both the real part and the imaginary part are themselves real numbers.
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It is common to use the following notation for the real and imaginary parts
of a complex number:

Re(a+ bi) = a and Im(a+ bi) = b.

Example 4.6.1. Consider the equation

�2 + 3�+ 4 = 0.

From the quadratic formula we see that solutions are

�
+

=
�3 +

p
9� 16

2
= �3

2
+

p
7

2
i

�� =
�3�p

9� 16

2
= �3

2
�

p
7

2
i.

Thus

Re(�
+

) = �3

2
and Im(�

+

) =

p
7

2
.

Complex numbers are a very interesting and important part of mathe-
matics. I strongly encourage all of you to take our Complex Variables course
to learn more. For now, however, I will present only those few results that
we need for this course.

First, note that we can perform all of the “usual” algebraic procedures on
complex numbers. Adding/subtracting and multiplying/dividing is rather
straightforward, provided we remember that i2 = �1. For example,

(2� 3i) + (7 + 2i) = 9� i,

(2� 3i)(7 + 2i) = 14� 17i� 6i2 = 20� 17i.

One can also define what it means to compute the exponential function of
a complex number by means of the Taylor series

ex = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + . . . .

In particular, we have

ea+ib = eaeib

= ea

1 + (ib) +

1

2
(ib)2 +

1

6
(ib)3 +

1

24
(ib)4 + . . .

�

= ea
✓

1� 1

2
b2 +

1

24
b4 � . . .

◆
+ i

✓
b� 1

6
b3 + . . .

◆�

= ea (cos(b) + i sin(b)) .
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In the case that a = 0 this identity becomes

eib = cos(b) + i sin(b)

and is known as Euler’s formula.
Euler’s formula has several interesting and useful applications.

Activity 4.6.1. Use Euler’s formula to deduce that

e�ib = cos(b)� i sin(b).

Conclude from this that

cos(b) =
eib + e�ib

2
and sin(b) =

eib � e�ib

2
.

Activity 4.6.2. Since e2✓ = (e✓)2, Euler’s formula implies that

cos(2✓) + i sin(2✓) = (cos ✓ + i sin ✓)2 .

Multiply out the right side of this identity in order to deduce the double angle
formulas.

Activity 4.6.3. Use the fact that ei(↵+�) = ei↵ei�, together with Euler’s
formula, to deduce the angle sum formulas.

Finally, we return to the problem that motivated this discussion: the
eigenvalues of the matrix (4.6.1). The computation above shows that the
eigenvalues are

�
+

= 2 + 2i and �� = 2� 2i.

We can subsequently compute the eigenvectors to be
✓

1
1 + 2i

◆
and

✓
1

1� 2i

◆
.

In the next section we discuss how to use complex eigenvalues and eigenvec-
tors in order to obtain real solutions to linear systems of equations.

Exercise 4.6.1. Put the following expressions into the form a+ b i, where
a,b are real numbers.

1. (1 + 2i)(3� 4i)
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2.
1

2 + i
+

1

1� 2i

3.
2 + 3i

1 + i

Exercise 4.6.2. Solve the quadratic equation x2+x+1 = 0 within the set
of complex numbers.

Exercise 4.6.3. Solve the system of equations:

x+ iy = 2

2ix� y = 3i.

Exercise 4.6.4. Find the eigenvalues and the eigenvectors of the matrix

✓�2 �9
1 �2

◆
.

Exercise 4.6.5. Derive the Euler formula using Taylor expansions.

Exercise 4.6.6. Decompose into real and imaginary parts.

1. e
i⇡

4

2. e�1+⇡ i

3. 2e1+i + 2e1�i

4. e�(2+⇡i)t

5. eit
✓
1
i

◆
� e�it

✓
1 + i
1 + i

◆

6. e(1+i)t

✓
i
1

◆
+ e(1�i)t

✓�i
1

◆

Exercise 4.6.7. Assume that a, b and t are some real numbers with b 6= 0.

1. Identify the real and the imaginary part of the expression e(a+ib)t.

2. Treat the real and the imaginary part as individual functions of the
independent t variable: f(t) and g(t). Graph these two functions. Note
that the graphs will look radically di↵erent depending on whether a is
positive, zero, or negative. Explore all three situations.
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4.7 Linear theory: Complex eigenvalues

In this section we explore how to use complex eigenvalues and eigenvectors
to construct real solutions to linear systems of equations. We begin with an
example.

Example 4.7.1. Consider the di↵erential equation

d

dt
Y =

✓
1 1
�5 3

◆
Y.

In the previous section we found that there were two eigenvalues

�
+

= 2 + 2i and �� = 2� 2i

having the associated eigenvectors
✓

1
1 + 2i

◆
and

✓
1

1� 2i

◆
.

These give rise to complex solutions to the di↵erential equation

Y
+

(t) = e(2+2i)t

✓
1

1 + 2i

◆
and Y�(t) = e(2�2i)t

✓
1

1� 2i

◆
.

A general complex solution to the equation is therefore

Y (t) = Ae(2+2i)t

✓
1

1 + 2i

◆
+Be(2�2i)t

✓
1

1� 2i

◆

= Ae2t
⇢✓

cos (2t)
cos (2t)� 2 sin (2t)

◆
+ i

✓
sin (2t)

sin (2t) + 2 cos (2t)

◆�

+Be2t
⇢✓

cos (2t)
cos (2t)� 2 sin (2t)

◆
� i

✓
sin (2t)

sin (2t) + 2 cos (2t)

◆�
.

Notice that the real parts of Y
+

(t) and Y�(t) are the same, while the imag-
inary parts are opposites. We can use this to our advantage in order to
construct real solutions.

First, choose A = 1

2

and B = 1

2

. In this case we obtain the solution

Y
1

(t) = e2t
✓

cos (2t)
cos (2t)� 2 sin (2t)

◆
.

Second, choose A = 1

2i and B = � 1

2i . In this case we obtain the solution

Y
2

(t) = e2t
✓

sin (2t)
sin (2t) + 2 cos (2t)

◆
.
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These two solutions are independent of one another, and are real-valued
functions! Thus we have succeeded in constructing two real, independent
solutions. Consequently, we can form a (real) general solution to the di↵er-
ential equation:

Y (t) = ↵e2t
✓

cos (2t)
cos (2t)� 2 sin (2t)

◆
+ �e2t

✓
sin (2t)

sin (2t) + 2 cos (2t)

◆
.

We also want to understand what the phase portrait for this equation
looks like. We do this in two steps. First we analyze the solution Y

1

(t).
Then we show that Y

2

(t) behaves in a qualitatively similar manner.
To understand how Y

1

(t) behaves we write it as

Y
1

(t) = e2t cos(2t)

✓
1
1

◆
+ e2t sin(2t)

✓
0
�2

◆
.

Let’s slowly build this function by modifying simpler functions.

1. The function

cos(t)

✓
1
0

◆
+ sin(t)

✓
0
1

◆

traverses the unit circle in the anti-clockwise direction; we can inter-
pret this as alternating between having a position that is displaced from
the origin in the ✓

1
0

◆
and

✓
0
1

◆

directions, with motion from the first vector to the second vector.

2. We can modify this unit circle trajectory by replacing the vectors
✓
1
0

◆
and

✓
0
1

◆

with other vectors. Thus the trajectory

cos(t)

✓
1
1

◆
+ sin(t)

✓
0
�2

◆
.

alternates between displacement in the
✓
1
1

◆
and

✓
0
�2

◆

directions, with motion from the first to the second. The result is an
elliptical path, traversed in the clockwise direction.



4.7. LINEAR THEORY: COMPLEX EIGENVALUES 129

3. If we replace cos(t) and sin(t) by cos(2t) and sin(2t), the result is a
trajectory that traverses the same path, but twice as fast.

4. Finally, to obtain Y
1

(t) we multiply the whole thing by e2t. This has
the e↵ect of increasing the overall location outwards as t increases,
changing the elliptical trajectory to an outwards spiral trajectory.

Now that we have analyzed Y
1

(t) we examine Y
2

(t). While we could
repeat the process used above to examine Y

1

(t), it is more e�cient to simply
note that Y

2

(t) = e�⇡/2Y
1

(t�⇡/4). Thus the two follow similar trajectories,
but are out of phase of one another.

The following shows the phase diagram for the di↵erential equation, with
Y
1

(t) in red and Y
2

(t) in blue.

We can learn several lessons from Example 4.7.1 that help us to more
e�ciently analyze di↵erential equations in the case of complex eigenvalues.

The first is that complex eigenvalues, and the corresponding complex
solutions, come in pairs where the real parts are the same and the imaginary
parts are opposites. In particular, we always get two solutions such that

Y
+

(t) = Re(Y
+

(t)) + i Im(Y
+

(t))

Y�(t) = Re(Y
+

(t))� i Im(Y
+

(t)).
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Using the superposition principle, we know that

Y
1

(t) = Re(Y
+

(t)) =
1

2
Y
+

(t) +
1

2
Y�(t)

Y
2

(t) = Im(Y
+

(t)) =
1

2i
Y
+

(t) +
1

2i
Y�(t)

are solutions. Thus in order to find two real, independent solutions all we
need to do is to find Y

+

(t) and then take, separately, the real and imaginary
parts.

The second lesson that we learn from the example above is that if � =
a+ ib then the real solution Y

1

(t) takes the form

Y
1

(t) = eat cos(bt)

✓~
�
◆
+ eat sin(bt)

✓}
|
◆

for some constants ~,�,},|. Thus the solution Y
1

(t) will oscillate between
being displaced in two di↵erent directions, rotating in either a clockwise or
anticlockwise direction. Furthermore,

• If Re(�) > 0 then solutions spiral outwards. In this case, the equilib-
rium at (0, 0) is called a spiral source. Spiral sources are unstable.

• If Re(�) = 0 then solutions traverse an elliptical trajectory. In this
case, the equilibrium (0, 0) is called a center. Centers are generally
considered to be unstable, but interpretations vary.

• If Re(�) < 0 then solutions spiral inward towards (0, 0). In this case,
the equilibrium at (0, 0) is called a spiral sink. Spiral sinks are stable.

The third lesson we learn from Example 4.7.1 is that the two solutions
Y
1

and Y
2

traverse trajectories that di↵er only by scaling and phase. Thus if
we are only interested in obtaining a qualitative understanding, it is enough
to study Y

1

(t).
Finally, note that there is an easy trick for seeing whether a spiral so-

lution is rotating in the clockwise or anticlockwise direction. Consider the
solution that passes through the point (1, 0) at that point, the velocity vec-
tor is determined by the di↵erential equation. If the vector is pointing in
to the first quadrant, then the solution traverses anticlockwise; if the vector
is pointing in to the fourth quadrant, then the solution is traversing in the
clockwise direction.
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Example 4.7.2. Consider the di↵erential equation

d

dt
Y =

✓
1 2
�5 �1

◆
Y.

We compute the eigenvalues to be � = ±3i. Already at this stage we know
that solutions traverse elliptical paths around the center-type equilibrium at
(0, 0). Furthermore, we know that the solution passing through the point
(1, 0) has velocity vector

✓
1 2
�5 �1

◆✓
1
0

◆
=

✓
1
�5

◆

at that point. Thus solutions traverse in the clockwise direction.
In order to obtain a general solution, we compute the eigenvector corre-

sponding to � = 3i, which is
✓

2
�1 + 3i

◆
.

Thus the first complex solution is

Y
+

(t) = e3i
✓

2
�1 + 3i

◆
=

✓
2 cos(3t)

� cos(3t)� 3 sin(3t)

◆
+i

✓
2 sin(3t)

� sin(3t) + 3 cos(3t)

◆

From this we may extract the real and imaginary parts, which we know are
each real solutions:

Y
1

(t) =

✓
2 cos(3t)

� cos(3t)� 3 sin(3t)

◆
and Y

2

(t) =

✓
2 sin(3t)

� sin(3t) + 3 cos(3t)

◆
.

Consequently, the general solution is

Y (t) = ↵

✓
2 cos(3t)

� cos(3t)� 3 sin(3t)

◆
+ �

✓
2 sin(3t)

� sin(3t) + 3 cos(3t)

◆

Finally, examining Y
1

(t) we find

Y
1

(t) = cos(3t)

✓
2
�1

◆
+ sin(3t)

✓
0
�3

◆
.

Thus we see that solutions oscillate between displacements in the directions
✓

2
�1

◆
and

✓
0
�3

◆
. (4.7.1)

The phase space diagram for this equation is as follows:



132 CHAPTER 4. LINEAR FIRST-ORDER SYSTEMS

In the diagram, the trajectory of solution Y
1

(t) is shown in purple. The two
directions (4.7.1) appear in red and blue, respectively.

Activity 4.7.1. Analyze the di↵erential equation

d

dt
Y =

✓�8 13
�2 2

◆
Y.

Determine the type of equilibrium point at (0, 0) and the direction in which
solutions traverse the phase plane. Use this to make a crude sketch of the
phase diagram. Then find the general solution.

Exercise 4.7.1.

1. Find the explicit solution of the following IVP.

dY

dt
=

✓
0 1
�1 0

◆
Y, Y (0) =

✓
x
0

y
0

◆
.

2. Suppose x
0

= 1 and y
0

= 2. What is the corresponding solution to
the IVP?

Exercise 4.7.2. Study each of the following “systems” by addressing the
following questions:

• Find the general solution of the system;
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• Draw the phase diagram for the system without any use of “technol-
ogy”. Then check your answer with Sage.

• Draw the solution curves in the t–x and the t–y planes.

• Discuss the long-term fate of the solutions of the system. Your answer
potentially depends on the initial condition Y (0).

• Discuss the stability of the equilibrium solution Y (t) = 0.

1.
dY

dt
=

✓
6 9

�5 �6

◆
Y ;

2.
dY

dt
=

✓
1 2
�4 �3

◆
Y ;

3.
dY

dt
=

✓
5 �3
6 �1

◆
Y .

Exercise 4.7.3. A market researcher established that the daily profits of
two competing stores, Ethel’s Knick-knack Heaven and Irma’s Antiques,
relate to each other as in the system:

dx

dt
= x+ 2y

dy

dt
= �5x+ 3y

here x(t) denotes the daily profit of Ethel’s store and y(t) denotes the daily
profit of Irma’s store. The time is measured in months.

1. Draw the phase portrait of this system. Use the least amount of com-
putations possible.

2. Use the phase portrait only to discuss the long-term fate of these
stores.

Exercise 4.7.4. Draw the phase diagrams of the following systems, using
the least possible amount of computation.

1.
dY

dt
=

✓
1 4
2 3

◆
Y
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2.
dY

dt
=

✓�5 2
�3 0

◆
Y

3.
dY

dt
=

✓
2 1
�1 2

◆
Y

Exercise 4.7.5. The following problem concerns profits of two nearby stores;
the model we shall use is based on a linear system of equations. The first
store, the profit of which at time t we label by x(t), was successful on its
own until recently when a new store opened nearby. This second store, the
profit of which at time t we label by y(t), o↵ers a lot of low-quality cheap
merchandise. If it wasn’t for the customers of the old store dropping by
periodically the second store would not be able to survive.

The model applicable to these two stores is:

8
>>><

>>>:

dx

dt
= x� 5y

dy

dt
= 2x� y.

Currently, the “profits” of both stores are negative. Determine if the stores
will ever recover, and what their long term fate is. Your supporting evidence
should at least include a phase diagram.


