
Chapter 8

Convergence for periodic Fourier
series

We are now in a position to address the Fourier series hypothesis – that functions
can realized as the infinite sum of trigonometric functions – discussed at the end
of 4.4. For simplicity, we work with domain ⌦ = [�1, 1] and use the periodic
boundary condition. The theory for other boundary conditions is similar, if a small
bit more complicated.

It is also convenient to work in the complex setting.

8.1 Periodic Fourier series

Recall from Example 6.25 the functions  k = e

ik⇡x , which are orthogonal with re-
spect to the standard inner product on L

2([�1, 1]) and satisfy the periodic boundary
conditions. If u is a function in L

2([�1, 1]) we can compute the constants

↵k =
hu, k i
k k k2

=
1
2

Z 1

�1
u(x)e

�ik⇡x
dx. (8.1) periodic-fourier-coefficients
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(Recall that in Example 6.25 we computed k k k2 = 2.) The constants ↵k in (8.1)
are called the periodic Fourier coe�cients of the function u. For any N the sum

uN =

NX

k=�N
↵ke

uk⇡x

does best in approximating u using the function  �N , . . . , N . Since kuk is finite,
it follows from Bessel’s inequality (7.4) that the sum

1X

k=�1
↵ke

ik⇡x

converges. This sum is called the periodic Fourier series of the function u.

Example 8.1. Consider the function u(x) = x. The corresponding Fourier coe�-
cients were computed in Example 6.25 to be

a0 = 0 and

ak =
(�1)k

k⇡i

if k , 0.

Thus the Fourier series for u is

X

k,0

(�1)k

k⇡i

e

ik⇡x =

1X

k=1

2(�1)k

k⇡
sin(k⇡x).

We know that the Fourier series of a function converges to some thing. The
remaining sections of this chapter address the question: Does the Fourier series
converge to the original function itself?

Exercise 8.2. Find the periodic Fourier series for the following functions. (Always
we are working in L

2([�1, 1]).

1. u(x) = x

2

2. u(x) = |x |

3. u(x) = |x |1/2
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4. u(x) = | sin(⇡x) |

Exercise 8.3. While it is convenient to work on the interval [�1, 1], we sometimes
need to consider the domain [�L, L]. Notice that if�1  x  1, then�L  xL  L.
Thus if we make the change of variables y = xL we can convert between the interval
[�1, 1] and the interval [�L, L].

1. Show that the orthogonal functions become  k (y) = e

ik⇡y
L . What is the norm

of  k (y) in L

2([�L, L])?

2. Show that the formula for the Fourier coe�cients becomes

↵k =
1

2L

Z L

�L
u(y)e

� ik⇡y
L

dy

3. Find the Fourier series on the interval [�L, L] for the function u(x) = x.

4. Let a be some fixed, small number. Find the Fourier series on the interval
[�L, L] for the function

u(x) =
8>><>>:

1 if |x |  a

0 else.

8.2 Notions of convergence
•Move up?

In the previous chapter we discussed a notion of convergence called convergence
in norm. There are, in fact, two possible notions of convergence for series.

Pointwise convergence We say that a sequence of functions uN converges point-

wise to u if for each x, the numbers uN (x) converge to the number u(x).

Convergence in norm We say that a sequence of functions uN converge in norm

to u if kuN � uk ! 0 as N ! 1. (In this course the norm refers to the L

2

norm, unless otherwise specified.)
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Pointwise convergence treats each input x independently. If a sequence of functions
un converges pointwise to function u, then we know that convergence happens for
each x value, but the rate of convergence can be very di�erent for di�erent x values.
This leaves open the possibility for very interesting behavior; see 8.4.

Convergence in norm, on the other hand, treats the whole domain all at once. Since
the L

2 norm is defined using an integral, convergence in norm means that “overall”
the functions un are getting close to the function u. This leaves open, however,
di�erences that have small integral.

convergence-counterexamples Example 8.4. In this example we consider two sequences of functions that high-
light the di�erence between pointwise convergence and convergence in norm. For
simplicity we work in L

2([0, 1]).

1. Consider the functions un (x) = n

2
xe

�nx . It is easy to see that, for any fixed
value of x 2 [0, 1], we have

lim
n!1

un (x) = 0.

Thus we say that the sequence of functions un converges pointwise to the
function u(x) = 0.

Notice, however, that the maximum of each function un occurs at x = 1/n,
and that un (1/n) = n/e. Thus

max
[0,1]
|un (x) � u(x) | = n

e

! 1.

Thus even though the functions un converge to zero for each fixed x, the
maximum distance between un and zero is in fact growing!

We can also compute the L

2 norm of un � u to be

kun � uk2 =
Z 1

0
n

4
x

2
e

�2nx
dx

=
n

4
� 1

4
(2n

3 + 2n

2 + n)e

�2n

Thus kun � uk2 ! 1 as n ! 1 and thus the sequence of functions un does
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not converge to u in norm.

2. Consider now the functions un (x) = ne

�n3x . Clearly un (0) = n, which
diverges as n ! 1. However, if x > 0 then un (x) ! 0 as n ! 1. Thus,
while the sequence un does not converge pointwise to u(x) = 0, it is true that
we have pointwise convergence for “most” values of x.

We can also compute

kun � uk2 =
Z 1

0
n

2
e

�2n3x
dx

=
e

�2n3 � 1
2n

3

from which we see that un does converge in norm to the zero function.

Exercise 8.5. Consider the functions vk (x) = x

k in L

2([0, 1]).

1. Make a plot of the first three or four functions vk .

2. Show that vk converges in norm to v = 0.

3. Does the sequence converge pointwise to some function? Explain.

Exercise 8.6. Consider the functions wk in L

2([0, 1]) defined by

wk (x) =
8>><>>:
p

k if 0  x  1
k

0 otherwise.

1. Make a plot of a typical function wk . What is the “area under the curve” of
each function? What happens to the area as k ! 1?

2. Explain why the sequence converges pointwise to the function w given by

w(x) =
8>><>>:

undefined if x = 0,

0 otherwise.

3. Show that kwk k = 1 for all k.
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4. Explain how it is possible/reasonable/etc for a function that converges point-
wise to zero at all points but one to still have norm equal to 1. What’s going
on here?

Exercise 8.7. Write a short paragraph describing the di�erence between conver-
gence in norm and pointwise convergence.

At the end of this chapter, we give conditions under which the Fourier series con-
verge in norm, and conditions under which the Fourier series partial sum converges
pointwise. Before we present these results, we first introduce some technical tools.

8.3 Approximate identities

Frequently in our physics courses we encounter the concept of a “point source.” It
is convenient, for example, to consider a mass (or a charge) to be at a particular
location. Mathematically, however, point sources are somewhat di�cult as the
mass (or charge) density corresponding to such an object cannot be a function in
the usual sense. To see this, suppose that we want to discuss an object of unit mass
located at the origin. The mass density function for such an object would be zero
at all points except at x = 0. Since integration typically ignores what happens at a
single point, we might expect that the integral of such a mass density function to be
zero. This, however, is a contradiction – the integral of the mass density function
needs to be equal to the total mass of the object.

The class of mathematical objects that get us out of this pickle are called “distri-
butions.” These are generalizations of functions that are not defined pointwise, but
are only defined in terms of how they behave under integration. Point sources can
be described using the Dirac delta distribution, which is given the symbol � and is
defined by

Z 1

�1
�(y)�(x � y) dy = �(x) for all � 2 C

1
0 (R).

It follows directly from the definition that � is even (in the sense that �(x) = �(�x)).
Using the even property, making a change of variables, and setting x = 0, we see
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that Z 1

�1
�(y)�(y) dy = �(0) for all � 2 C

1
0 (R). (8.2) AltDirac

It is common to interpret (8.2) as meaning that the Dirac distribution �(x) “is zero
for x , 0 and infinite when x = 0 in such a way that the total size is 1.” While this
interpretation works well for physical though experiments, it is somewhat di�cult
to deal with mathematically.

One way to put the Dirac delta distribution on mathematical footing is to introduce
is the concept of an “approximate identity.” Let ⌦ be a subset of R. A sequence of
functions Kn (x) is an approximate identity for the domain ⌦ if

Z

⌦
Kn (x) dx = 1

and
lim
n!1

Z

⌦
Kn (y)�(x � y) dy = �(x)

for all test functions � 2 C

1
0 (⌦). (Here we can view � as having the domain of R,

but equal to zero outside ⌦.)

AI-step-example Example 8.8. Consider the functions

Kn (x) =
8>>><>>>:

n

2
if |x |  1

n

0 otherwise

on the domain ⌦ = [�1, 1]; see 8.1.

I claim that Kn is an approximate identity.

It is straightforward to compute

Z 1

�1
Kn (x) dx =

Z 1/n

�1/n

n

2
dx = 1;

thus the first property is satisfied.

To see the second property, let � be a test function that is zero outside some region
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Figure 8.1: The functions Kn for n = 2, 4, 6, 8, 10. As n gets large, the functions are
concentrated near x = 0. Yet each corresponding shaded area, and hence integral,
is always 1. Thus in the limit as n ! 1, the functions Kn approximate a point
source at the origin. figAI-step-plot

in (�1, 1) and define

�(z) =
Z z

0
�(x � y) dy.

Notice that �(0) = 0 and thus

Z 1

�1
Kn (y)�(x � y) dy =

n

2

Z 0

�1/n
�(x � y) dy +

n

2

Z 1/n

0
�(x � y) dy

=
1
2

"
�(�1/n) � �(0�)

�1/n
+
�(1/n) � �(0+)

1/n

#
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Therefore the Fundamental Theorem of Calculus implies

lim
n!1

Z 1

�1
Kn (y)�(x� y) dy =

1
2

⇥
�0(0�) + �0(0+)

⇤
=

1
2

⇥
�(x

�) + �(x

+)
⇤
= �(x).

Notice that we do not actually need � to be a test function – it is enough for � to be
piecewise continuous. However, in the case that � is not continuous at x, then the
limit is the average of the left and right limits of �.

The approximate identity Kn in 8.8 is not particularly well suited for working with
the periodic Fourier series. Thus in the proof of 8.12 we instead make use of the
approximate identity

Dn (x) =
1
2

nX

k=�n
e

ik⇡x,

which called the Dirichlet kernel. Plots of Dn for the first few values of n appear
in 8.2. Before showing that Dn is an approximate identity, we simply derive some
properties of the Dirichlet kernel.

Exercise 8.9.

1. Show that

Dn (x) =
1
2

e

�ik⇡x
2lX

l=0

⇣
e

i⇡x
⌘ l
.

2. Use the identity above to show that

Dn (x) =
1
2
+

nX

k=1
cos(k⇡x) =

sin
⇣

(2n+1)⇡
2 y

⌘

2 sin
⇣
⇡
2 y

⌘ (8.3) DK-trig-identity

and that Z 0

�1
Dn (x) dx =

1
2
=

Z 1

0
Dn (x) dx. (8.4) DK-integral

3. Finally, show that that Dn is periodic, with period 2, and that Dn is an even
function.

We now show that Dn is an approximate identity. Fix � 2 C

1
0 ([�1, 1]) and fix some
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Figure 8.2: Plots of the Dirichlet kernel Dn (x) for several values of n. Notice. . . fig:DK-plot

x 2 [�1, 1]. We want to show that

lim
n!1

"Z 1

�1
Dn (y)�(x � y) dy � �(x)

#
= 0. (8.5) DK-claim-ID

Before proceeding, let us make sure that the integral in (8.5) makes sense. Since
we are integrating on the interval �1  y  1, the test function � is being evaluated
on the interval x �1  x � y  x +1. However, since � 2 C

1
0 ([�1, 1]) we can view

� as a function defined on all of R, with � = 0 outside of [�1, 1]. Thus the integral
does indeed make sense.
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Using (8.4) and (8.3) we have

Z 1

�1
Dn (y)�(x � y) dy � �(x) =

Z 1

�1
Dn (y)

⇥
�(x � y) � �(x)

⇤
dy

=

Z 1

�1

�(x � y) � �(x)

2 sin
⇣
⇡
2 y

⌘ sin
 

(2n + 1)⇡
2

y

!
dy.

Our strategy is to view this as the Fourier coe�cient for the function

�(y) =
�(x � y) � �(x)

2 sin
⇣
⇡
2 y

⌘ =
�(x � y) � �(x)

y

y

2 sin
⇣
⇡
2 y

⌘ .

The function �(y) is defined for all y , 0.

Exercise 8.10. Use the fact that � is di�erentiable to show that the limit as y ! 0
of �(y) exists. Conclude that �(y) is a piecewise continuous function with a
removable discontinuity at y = 0.

We now proceed by invoking 7.9. The functions

vn = sin
 

(2n + 1)⇡
2

y

!

form an orthogonal collection in L

2([�1, 1]) with kvn k = 1. Thus (8.5) is equivalent
to

lim
n!1
h�, vni = 0,

which is precisely the statement of 7.9. Thus we conclude that Dn is in fact an
approximate identity.
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8.4 Convergence for periodic Fourier series

thm:FS-converge-in-norm Theorem 8.11 (Convergence in norm for Fourier series). Suppose u is a function
in L

2([�1, 1]). Then the sequence of functions uN given by

uN =

NX

k=�N
↵k k (8.6) FS-partial-sum

converges in norm to u.

The proof of 8.11 is somewhat complicated, and is thus reserved for one of the
“excursions”; see 33.

The explorations in the exercises at the end of the previous chapter suggest that the
functions in (8.6) converge pointwise at all but a few exceptional points. It turns
out that that this is true, provided we make some assumptions about the function
u. (These assumptions are sometimes called “Dirichlet conditions” – not to be
confused with “Dirichlet boundary conditions.”) The remainder of this chapter is
devoted to proving the following version of of the pointwise convergence theorem.

thm:FS-pointwise-convergence Theorem 8.12 (Pointwise convergence for Fourier series). Suppose

u 2 L

2
PC([�1, 1]) and u

0 2 L

2
PC([�1, 1]).

(The second condition implies that at each point both the left and right derivatives
of u exists, meaning that at each x 2 [�1, 1] the limits

f

0(x

�) = lim
h!0�

f (x + h) � f (x)
h

and f

0(x

+) = lim
h!0+

f (x + h) � f (x)
h

exist.) Then for each x 2 [�1, 1] the sequence uN (x) converges to

1
2

�
f (x

�) + f (x

+)
�
=

1
2

 
lim
y!x�

f (y) + lim
y!x+

f (y)
!
.

The remainder of this section is devoted to the proof of 8.12. Suppose that u, u0 2
L

2
PC([�1, 1]). Let uN be the partial sum given by (8.6) and fix some x 2 [�1, 1].
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Our goal is to show that

lim
N!1

"
uN (x) � 1

2
�
u(x

�) + u(x

+)
�

#
= 0.

Before we begin, we need to make technical clarification. For points x that are
strictly between �1 and 1, it is clear what we mean by u(x

�) and u(x

+). However,
if x = 1, then the right limit u(x

+) does not really make sense. The way to handle
this situation is to extend u periodically to be defined for all real numbers. We then
define u(1+) and u(�1�) using these periodic extensions.

Example 8.13. Consider the function u(x) = x with domain [�1, 1]. When extended
periodically to be defined on the whole real line, the function is no longer continuous.
Rather, it has jump discontinuities at x = 2k + 1 for all integers k; see 8.3.

Figure 8.3: The periodic extension of the function u(x) = x, known as the “sawtooth
wave.” Notice that u(1+) = �1, while u(1�) = 1. fig:sawtooth-plot

Exercise 8.14. Consider the function

u(x) =
8>><>>:
�1 if � 1  x < 0

1 if 0  x  1.

Draw a picture of the periodic extension of u. What is u(1+)? What is u(1�)?
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The following is “essentially obvious” but nevertheless important.

ex:periodic-integral Exercise 8.15. Draw a picture that illustrates the following fact: Suppose f : R!
R is a periodic function with period 2. Then for any real number a we have

Z a+2

a

f (x) dx =

Z 1

�1
f (x) dx.

We now proceed to prove 8.12 using an argument that is similar to the argument
used to show that the Dirichlet kernel Dn is in fact an approximate identity. The
argument is made a bit more complicated by the fact that u(x) is not a test function,
but otherwise follows the exact same pattern.

We begin with the following.

exercise:partial-sum-is-convolution Exercise 8.16. Show that the function uN (x) given by (8.6) can be written

uN (x) =
Z 1

�1

1
2

NX

k=�N
u(y)e

ik⇡ (x�y)
dy.

Exercise 8.16 implies that

uN (x) =
Z 1

�1
DN (y)u(x + y) dy.

Thus using (8.4) we have

uN (x) � 1
2

�
u(x

�) + u(x

+)
�

|                              {z                              }
I

=

Z 0

�1
DN [u(x + y) � u(x

�)] dy
|                                 {z                                 }

I�

+

Z 1

0
DN [u(x + y) � u(x

+)] dy
|                                 {z                                 }

I+

.
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Using (8.3), we see that

I

� =
Z 0

�1

u(x + y) � u(x

�)

2 sin
⇣
⇡
2 y

⌘

cos

✓⇡
2
y
◆

sin (N⇡y) + sin
✓⇡
2
y
◆

cos (N⇡y)
�

dy,

I

+ =

Z 1

0

u(x + y) � u(x

+)

2 sin
⇣
⇡
2 y

⌘

cos

✓⇡
2
y
◆

sin (N⇡y) + sin
✓⇡
2
y
◆

cos (N⇡y)
�

dy.

If we define the functions

F (y) =

8>>>>>>>>>><>>>>>>>>>>:

u(x + y) � u(x

�)

2 sin
⇣
⇡
2 y

⌘ cos
⇣
⇡
2 y

⌘
if y < 0

u(x + y) � u(x

+)

2 sin
⇣
⇡
2 y

⌘ cos
⇣
⇡
2 y

⌘
if y > 0

and

G(y) =

8>>>>>>><>>>>>>>:

u(x + y) � u(x

�)
2

if y < 0

u(x + y) � u(x

+)
2

if y > 0

then we have
I = hF (y), sin(N⇡y)i + hG(y), cos(N⇡y)i.

Exercise 8.17. I claim that F and G are in L

2([�1, 1]). Explain why this fact,
together with 7.9, implies the desired convergence of the Fourier series.

We now verify the claim that F and G are in L

2([�1, 1]). First, we observe that u

being piecewise continuous implies that G is bounded and thus in L

2([�1, 1]).

Second, recall that we are assuming that the left and right derivatives of u exist at
input x. This implies that

u(x + y) � u(x

�)

2 sin
⇣
⇡
2 y

⌘ =
u(x + y) � u(x

�)
y

y

2 sin
⇣
⇡
2 y

⌘

is bounded for �1  y < 0. Hence F (y) is bounded for �1  y < 0; an analogous
argument implies that F (y) is bounded for 0 < y  1. Thus F 2 L

2([�1, 1]).


