In-class activity regarding \mathbb{P}_3

Here we study the linear transformation $H: \mathbb{P}_3 \to \mathbb{P}_3$ given by

$$\frac{d^2}{dx^2} - 2x\frac{d}{dx}$$
.

- (1) Verify that H is indeed a linear transformation $\mathbb{P}_3 \to \mathbb{P}_3$
- (2) Find a matrix $M_{\mathcal{E}}$ which expresses H relative to the standard basis \mathcal{E} .
- (3) Find a basis for the null space of $M_{\mathcal{E}}$. Use this to find a basis for $\ker(H)$.
- (4) Find a basis for the columnspace of $M_{\mathcal{E}}$. Use this to find a basis for im(H).
- (5) Verify that the Rank-Nullity theorem holds for the transformation H.
- (6) Let $q = 1 + 2x + 3x^2 + 4x^3$. Describe the space of all solutions p to the equation H(p) = q.
- (7) Let $r = 1 + 2x 3x^2 4x^3$. Describe the space of all solutions p to the equation H(p) = r.
- (8) Find the eigenvalues and eigenspaces of $M_{\mathcal{E}}$. Use these to determine the eigenvalues and eigenspaces of H.
- (9) Construct a basis for \mathbb{P}_3 consisting of eigen-polynomials p of H which have the property that p(1) = 1. Call this basis \mathcal{B} .
- (10) Construct a matrix S which converts between the basis \mathcal{E} to basis \mathcal{B} .
- (11) Use the matrix S to convert the matrix $M_{\mathcal{E}}$ to the matrix $M_{\mathcal{B}}$ which describes H relative to coordinates determined by \mathcal{B} .