
Chapter 1

Introduction

1.1 What is the course about?

• The main theme of this course is the study of functions.

• Calculus provides a great collection of tools for studying functions.

We can find the various rates of change of a function, compute the cu-

mulative e↵ect of a function, approximate a function by a polynomial,

etc. We can do this in both one and higher dimensions.

• Most of what we have done in the past is study one function at a time.

In this class we study the structure of spaces of functions. Part of

this involves constructing certain collections of functions called special

functions.

• In order to apply tools of calculus to a function, it needs to be ‘su�-

ciently nice.’ Thus we spend some time describing various collections

(called spaces or classes) of functions.

• Not surprisingly, functions which are considered “special” in the cal-

culus sense are those which satisfy certain di↵erential equations. Thus

we will end up using certain di↵erential equations as a tool for studying

functions.
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• It also turns out to be very helpful to draw an analogy between vectors

in R3 and certain classes of functions – thus we study vector spaces of

functions.

• A great deal of the course turns out to be related to the idea of ways

to represent functions.

What might this mean? At its heart, a function is a systematic and

consistent way for assigning an output in a codomain to each ele-

ment in a domain. (If you have taken our Discrete course, you have

learned to express this as a certain type of relation on the product of

the domain and codomain.) In some circumstances, one has a (more

or less) explicit formula which can be used to make this assignment,

but in most circumstances this is not the case. (We may only know

from some abstract result, such as the fundamental theorem of ODE,

that the function exists.) By ‘representation of a function’ we mean

a description of the rule of assignment given in terms of other objects

which are ‘well-known.’

For example: One might deduce somehow that there is a function

x 7! lnx, but there is no ‘easy’ way to write down a formula for

this function. On the domain (�1, 1) we can, however, represent the

function using the power series representation

ln (1 + x) =
1X

k=1

(�1)k+1

k
xk (1.1) NaturalLogPowerSeries

• Finally, it is helpful to have some motivations about why certain func-

tions are useful, or where such functions arise. As the previous discus-

sion indicates, one place where functions naturally arise is in studying

ODEs. There is a well-trodden path: physical system  di↵erential

equation  function (which solves equation).
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1.2 The exponential function

• Old friend ex

• One way to view: There is a number e and we are raising it to power

of x. . . whatever that means

• Another perspective: start with basic growth model

dP

dt
= rP (1.2) SimpleBasicGrowthModel

Here r is some constant

• We use the following:

ACPowerSeries Principle (Absolutely convergent power series). Suppose the power

series
P

k

a
k

(x� x⇤)k converges absolutely for certain values of x.

1. The power series defines a function on a domain consisting

of all x for which the series converges.

2. The function defined by the power series is the zero function

if and only if each coe�cient a
k

vanishes.

3. We are allowed to di↵erentiate/integrate the function term-

by-term.

4. We are allowed to do other algebraic operations term-by-

term.

The proof of this principle is postponed to the real analysis course.

• Look for solution of form P =
P1

k=0 akx
k. (That is, take x⇤ = 0.)

• We find that there is no restriction on the first coe�cient a0

• The other coe�cients satisfy a recursion relation

a
k

= rka
k�1 (1.3) ExponentialRecursionRelation
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• Thus we see that in order to get a solution we need a
k

= a0
r

k

k!

• Therefore we want to construct a function by

P = a0

1X

k=0

1

k!
(rx)k

• We now need to check that the coe�cients actually give us a function.

In particular, we need to check that the power series converge. Here

we can use the ratio test:

Principle (Ratio test). The sum
P

k

a
k

xk converges absolutely if

lim
k!1

����
a
k+1x

k+1

a
k

xk

���� < 1.

• This tells us that we get a function for all values of x

• Once we have absolute convergence we can verify that the function

satisfies the di↵erential equation.

We then define the exponential function as the solution with r = 1

and P (0) = 1

• Of course, we also want all the properties of the exponential function:

eaeb = ea+b (1.4)

(ea)b = eab (1.5)

We outsource this to Real Analysis class.

Exercise 1.2.1.

1. Show that

(1� x)(1 + x+ x2 + · · ·+ xn) = 1� xn+1.
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Use the result to find a nice formula for

1 + x+ x2 + · · ·+ xn

2. Use the formula you found above to find a power series for the function

1

1� x
.

For which values of x does the power series converge?

3. Integrate to obtain (1.1).

4. Find a power series for the function

1

1 + 9x2
.

For which values of x does it converge?

Exercise 1.2.2. Here’s another way to think about the natural logarithm

function – as the inverse to the exponential function.

1. Suppose that l(x) is the function such that exp [l(x)] = x, whenever

l(x) is defined. Show that the chain rule implies that l(x) satisfies the

di↵erential equation

l0(x) =
1

exp [l(x)]
=

1

x

l(1) = 0.

2. We now suppose that l(x) has a power series expansion centered at

x⇤ = 1, meaning that

l(x) =
1X

k=0

a
k

(x� 1)k.

Explain why a0 = 0 and that we may assume the sum starts with k = 1.

3. Write 1
x

= 1
1�[�(x�1)] ; then use the geometric series to construct a series
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expansion for 1
x

centered at x⇤ = 1. For which values of x does the

series converge?

4. Using the power series expansions for l(x) and for 1
x

, together with the

di↵erential equation for l(x), determine the coe�cients a
k

.

5. Conclude by forming a power series for l(x) and comparing to (1.1).

8



1.3 The simple harmonic oscillator

We now introduce the most important example of the course: SHO.

• Math 235 derivation: Hooke & Newton leads to

d2x

dt2
= �!2x (1.6) SHO-Omega

where ! =
q

k

m

.

• Write as a first order system

dx

dt
= v

dv

dt
= �!2x

(1.7) SHO-Omega-FirstOrderSystem

• Recall that this is a special case of Hamiltonian systems:

dx

dt
= v

dv

dt
= �U 0(x)

(1.8)

where U(x) is the potential function and

H =
1

2
v2 + U(x)

=
1

2

✓
dx

dt

◆2

+ U(x)
(1.9)

is a conserved quantity.

• Questions:

1. Where does SHO come from? Meaning, is there a way to get it

from “first principles”?

2. How to build solutions “from scratch”?

Main idea: Find an approach that generalizes to other situations!
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Exercise 1.3.1.

1. Write (1.7) using vector-matrix notation.

2. Use the “eigenstu↵” method fromMath 235 to find the general solution.

3. Finally, write down the general solution to the first-order equation

(1.6).

Exercise 1.3.2. Recall the method of understanding Hamiltonian sys-

tems by using “energy diagrams.” Draw the energy diagrams for the follow-

ing potentials and describe the corresponding behavior of solutions:

1. U(x) = x3 � x2

2. U(x) = cosx

Exercise 1.3.3. Suppose we didn’t know that the cosine and sine func-

tions existed. Here we show how to discover them using (1.6).

1. We suppose that (1.6) has a solution with a power series, namely that

x(t) =
1X

k=0

a
k

tk.

Plug this in to (1.6) and determine a recursion relation amongst the

a
k

.

2. “Notice” that the even and odd coe�cients are independent, in the

sense that specifying a0 tells you a2, which tells you a4, etc. Similarly,

specifying a1 tells you a3, etc. Express this by constructing recursion

relations of the form

a2l = stu↵ involving l, !, and a2(l�1).

a2l+1 = stu↵ involving l, !, and a2(l�1)+1.
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