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Introduction

Problems?

Does there exist a function u : [0, 1]→ R such that

I u′′(t) +
√

17 u(t) = cos (3t),

I u(0) = 0, and

I u′(0) = 1?

What about a function u : [0, 1]→ R such that

I u′′(t) + 42π u(t) = e−t ,

I u(0) = 0, and

I u(1) = 0?
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Introduction

Why?

I Science. . .

I Idle curiosity. . .

I Learn something!
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Introduction

General problem

Find function u : [0, 1]→ R satisfying

I u′′(t) + λ u(t) = f (t) and

I Conditions at t = 0 and/or t = 1.

Special case

Special case: λ = 0

I Integrate twice. . . two free constants. . .

I Need two conditions

TLAs:

I IVP  Cauchy: u(0) = u0, u′(0) = v0
I BVP  Dirichlet: u(0) = 0, u(1) = 0
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Approximate problems

Approximating the problem. . .

tk−1 tk tk+1

∆t

I Divide domain [0, 1] in to intervals of size
∆t = 1

n+1

I Only record values at
t0 = 0, t1 = ∆t, t2 = 2(∆t), . . . , tn+1 = 1

I u(t) ↔ u =


u0
u1
...

un+1

 =


u(t0)
u(t1)

...
u(tn+1)
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Approximate problems

Example (n = 3)
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u(t) = sin (πt) u =


0
1√
2

1
1√
2

0



6 / 27



Approximate problems

What about derivatives?

I Basic approximation

u′(tk) =
1

∆t
[uk+1 − uk ] +O(∆t)

I Use Taylor for better approximations
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Approximate problems

I Taylor:

u(tk+1) = u(tk) + u′(tk) ∆t +
u′′(tk)

2
(∆t)2 +

u′′′(tk)

6
(∆t)3 +O

(
(∆t)4

)

u(tk−1) = u(tk)− u′(tk) ∆t +
u′′(tk)

2
(∆t)2 − u′′′(tk)

6
(∆t)3 +O

(
(∆t)4

)
I Derivatives modulo O

(
(∆t)2

)
u′′(tk) ≈ 1

(∆t)2
[uk−1 − 2uk + uk+1]

u′(tk) ≈ 1

2(∆t)
[uk+1 − uk−1]
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Approximate problems

Constructing approximate problems

DE problem Approximate problem

Var. function u(t) vector u = (uk)

Eqn. u′′ + λu = f
uk−1 − 2uk + uk+1

(∆t)2
+ λuk = fk

IC u(0) = u0, u′(0) = v0 u0 = u0, u1 = u0 + v0(∆t)

BC u(0) = 0, u(1) = 0 u0 = 0, un+1 = 0

I Approximate problem is algebraic

I Equations are linear
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IVP

Approximate initial value problem

I Initial conditions  u0, u1
I Approximate equation

uk+1 = [2− λ(∆t)2]uk − uk−1 + fk

determines remaining entries in u.

I All initial conditions lead to solutions

I Parameter λ does not affect solvability
I Peano, 1890: Same is true for original IVP

I Approximate solution  actual solution
I Interesting historical notes. . .
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IVP
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BVP

A boundary value problem

u′′(t) + λu(t) = sin(πt),

u(0) = 0, u(1) = 0

I λ 6= π2  General solution is

u(t) = A sin (
√
λ t) + B cos (

√
λ t) +

1

λ− π2
sin (πt)

I λ = π2  General solution is

u(t) = A sin (
√
λ t) + B cos (

√
λ t)− t

2π
cos (πt)

Conclude
I λ = π  unique solution
I λ = π2  no solution
I λ = 4π2  infinite number of solutions
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BVP

Huh?

Solvability of BVP seems very delicate. . .

Plan:

I Study approximate problem

I Try to gain insight about when solutions exist

Method:

I Use tools for studying linear, algebraic equations
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BVP

Approximate equation Mu = f

Approximate
u′′(t) + λu(t) = f (t)

by

1

(∆tx)2
[uk−1 − 2uk + uk+1] + λuk = fk , k = 1, . . . , n.

Using u0 = 0 and un+1 = 0 write
α 1
1 α 1

. . .
. . .

. . .

1 α 1
1 α


︸ ︷︷ ︸

M


u1
u2
...

un−1
un


︸ ︷︷ ︸

u

= (∆t)2


f1
f2
...

fn−1
fn


︸ ︷︷ ︸

f

Here α = −2 + λ(∆t)2
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BVP

Example when n = 3

u′′(t) + λu(t) = sin (πt)

u(0) = 0 u(1) = 0

approximated by−2 + 1
16λ 1 0

1 −2 + 1
16λ 1

0 1 −2 + 1
16λ

u1
u2
u3

 =
1

16


1√
2

1
1√
2

 .

I First/last entry = 0 is “built in”
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BVP

Some linear algebra

Proposition

For linear transformation L : Rn → Rn, the solvability of the
equation

(F) L(u) = f

is described as follows:

1. If ker(L) = {0}, then (F) has a unique solution for all f ∈ Rn.

2. If ker(L) 6= {0}, then either

2.1 f ∈ ker(L∗)⊥, in which case (F) has multiple solutions, or

2.2 f /∈ ker(L∗)⊥, in which case (F) does not have a solution.

Here L∗ is the adjoint transformation of L:
If L(u) = Mu, then L∗(u) = Mtu
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BVP

Example when n = 3

−2 + 1
16λ 1 0

1 −2 + 1
16λ 1

0 1 −2 + 1
16λ

u1
u2
u3

 =
1

16


1√
2

1
1√
2


Compute

detM =

(
λ

16
− 2

)(
λ

16
− 2 +

√
2

)(
λ

16
− 2−

√
2

)
.

I Unique solution if λ /∈ {32, 32− 16
√

2, 32 + 16
√

2}

I If λ = 32 then null (M) = span


 1

0
−1


Since


1√
2

1
1√
2

 ·
 1

0
−1

 = 0 we have multiple solutions.

I Also multiple solutions if λ = 32 + 16
√

2.
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BVP

Example when n = 3 continued

−2 + 1
16λ 1 0

1 −2 + 1
16λ 1

0 1 −2 + 1
16λ

u1
u2
u3

 =
1

16


1√
2

1
1√
2



I If λ = 32− 16
√

2 then null (M) = span


 1√

2
1


I Since

 1√
2

1

 ·


1√
2

1
1√
2

 6= 0, no solutions.
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BVP

Summary of example when n = 3

I We understand solvability of approximate system by
computing detM

I For most values of λ, there exists unique solution

I For exceptional values of λ either no solution or many
solutions, depending on whether RHS is orthogonal to null
space.

Now we need to do this for general n × n matrix M. . .
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BVP

Computing determinants

I Let dn =

∣∣∣∣∣∣∣∣∣∣∣

α 1
1 α 1

. . .
. . .

. . .

1 α 1
1 α

∣∣∣∣∣∣∣∣∣∣∣
I Expand around first row: dn = αdn−1 − dn−2
I Subject to d1 = α, d2 = α2 − 1

I When α2 6= 4 we find dn = 1√
α2−4

[
(z+)n+1 − (z−)n+1

]
,

where

z± =
α

2
±
√(α

2

)2
− 1

I When α2 = 4, dn 6= 0.
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BVP

Exceptional values of λ

I detM = 0 when

λl = 2(n + 1)2
[

1− cos

(
πl

n + 1

)]
, l = 1, 2, . . . , n.

I With λ = λl

null (M) = span


vl =


sin
(

πl
n+1

)
sin
(

2πl
n+1

)
...

sin
(

nπl
n+1

)




I This looks familiar!
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BVP

Solvability of approximate problem

Translating the linear algebra theorem, we have

1. If λ is not one of the exceptional values, then the null space of
M is trivial and the approximate problem has a unique
solution for each vector f.

2. If λ = λl , one of the exceptional values, then the null space of
M is non-trivial and is spanned by vl . Furthermore,

2.1 if vl · f = 0 the approximate problem has multiple solutions,
while

2.2 if vl · f 6= 0 the approximate problem does not admit any
solutions.

This sets expectations for original problem. . .
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BVP

Returning to original BVP

I Expectation: Original problem modeled by limit n→∞
I Compute using Taylor expansion of cosine

λl = 2(n + 1)2

[
1−

{
1− 1

2

(
πl

n + 1

)2

+O
(
n−4
)}]

= (πl)2 +O
(
n−2
)

I Conjecture:
I If λ 6= (πl)2 for l = 0, 1, 2, . . . then there exists unique

solution.
I If λ = (πl)2 for some l = 0, 1, 2, . . . then either no solution or

many solutions. . .
. . . depending on “orthogonality to vl(t) = sin (πlt)”
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BVP

Orthogonality

What should “orthogonality to sin (πlt) mean?

I In approximate setting, it means

0 =


f
(

1
n+1

)
f
(

2
n+1

)
...

f
(

n
n+1

)

 ·


sin
(

πl
n+1

)
sin
(

2πl
n+1

)
...

sin
(

nπl
n+1

)

 =
n∑

k=0

f (tk) sin (πltk)

I Riemann sum for

∫ t

0
f (t)vl(t) dt, vl(t) = sin (πlt)

I Use inner product 〈f , g〉 =

∫ 1

0
f (t)g(t) dt
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BVP

Boundary value problem, revisited

u′′(x) + λu(x) = sin(πx), x ∈ (0, 1)

u(0) = 0, u(1) = 0, λ > 0

Are there solutions?

I λ = π not an exceptional value
 unique solution

I λ = π2 = λ1
Since f (t) = v1(t) sin (πx)  no solution

I λ = 4π2 = λ2
Is f (t) = sin (πt) orthogonal to v2(t) = sin (2πx)?

Yes  multiple solutions
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BVP

More formally. . .

I View L = d2

dt2
− λ as linear transformation V0 → V

I V = {u : [0, 1]→ R | finite norm }
I V0 = {u ∈ V | u(0) = 0, u(1) = 0}

I Express generic BVP as finding u such that L(u) = f
I “Same theorem” describes solvability:

1. If ker(L) contains only the zero function, then we have a
unique solution for all f .

2. If ker(L) contains a non-zero function, then either

2.1 f ∈ ker(L∗)⊥, in which case we have multiple solutions, or
2.2 f /∈ ker(L∗)⊥, in which case we have has no solution.

I Case 1 occurs for all but a countable list of λ

“Fredholm alternative”. . . “spectrum”. . . “functional analysis”. . .
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The end

Summary & Conclusion

I Numerical analysis sheds interesting light on solvability of
problems.

I Existence and uniqueness theory for boundary value problems
is “complicated” ↔ “interesting”

I One can construct an approximate problem involving linear
mappings of Rn

I Theory for mappings of Rn has same structure theory for
linear mappings of function spaces.

I Vector spaces are everywhere!

Thank you!

27 / 27


	Introduction
	Approximate problems
	IVP
	BVP

