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Introduction

Problems?

Does there exist a function u: [0,1] — R such that
» u"(t) + V17 u(t) = cos (3t),
» u(0) =0, and
» J(0) =17
What about a function u: [0,1] — R such that
» J(t)+ 271 u(t) =€t
» u(0) =0, and
» u(l) =07

N
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Introduction

Why?

» Science. ..

> Idle curiosity. ..

> Learn something!
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Introduction

General problem

Find function u: [0,1] — R satisfying
» J"(t) + Au(t) = f(t) and
» Conditions at t =0 and/or t = 1.

Special case
Special case: A =0

> Integrate twice. . .two free constants. ..

» Need two conditions

TLAs:
» VP ~~ Cauchy: u(0) = ug, '(0) = v
» BVP ~~ Dirichlet: u(0) =0, u(1)=0
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Approximate problems

Approximating the problem. ..

» Divide domain [0, 1] in to intervals of size

_ 1
At_n+1

» Only record values at
to=0,t1 = At, trp =2(At),..., thr1 =1

te1 tkl&-l to u(to)
- u U(tl)

At » u(t) <> u= = i
Upt1 u(tny1)



Approximate problems

Example (n = 3)

0.2 0.4 0.6

u(t) = sin (rt)

u—

oH—Sl-e
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Approximate problems

What about derivatives?

» Basic approximation

u'(tk) = i [uks1 — uk] + O(At)

» Use Taylor for better approximations
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Approximate problems

» Taylor:

u(tes1) = u(te) + o' (te) At + u”(2tk) (At)? + m(tk) (At)* + 0O ((At)Y)

(tir) = u(t) — /(8 e+ T (aep - U (a4 0 ()
» Derivatives modulo O ((At)z)
u"(ty) ~ (At)2 [uk—1 — 2up + Uy 1]

u'(te) ~ 2(1At) (k1 — uk—1]



Approximate problems

Constructing approximate problems

DE problem Approximate problem

Var.  function u(t) vector u = (uy)

Uk—1 — 2Uk + Upy1

Eqn. " +Xu="f 1)

+)\Uk = fk

IC u(0) = up, ' (0) = vy up = g, up = up + vo(At)

BC u(0)=0,u(l)=0 up=0, upy1 =0

> Approximate problem is algebraic

» Equations are linear
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IVP

Approximate initial value problem

v

Initial conditions ~ ug,

v

Approximate equation
k1 = [2 = MAD) ok — uk—1 + fi

determines remaining entries in u.

v

All initial conditions lead to solutions

v

Parameter A does not affect solvability
Peano, 1890: Same is true for original IVP

v

» Approximate solution ~~ actual solution
> Interesting historical notes. . .
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IVP
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BVP

A boundary value problem

» )\ # w2 ~> General solution is

u(t) = Asin (VX t) 4+ Bcos (VA t) + ﬁ sin (7t)

» \ = 72 ~ General solution is
t
u(t) = Asin (VA t) + Bcos (VA t) — 5 cos (7t)
T

Conclude
» A\ =7 ~» unique solution
> )\ e 7T2

» )\ = 472 ~ infinite number of solutions

~ no solution
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BVP

Huh?

Solvability of BVP seems very delicate. . .

Plan:

» Study approximate problem

» Try to gain insight about when solutions exist
Method:

» Use tools for studying linear, algebraic equations
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BVP

Approximate equation Mu = f

Approximate
u"(t) + Au(t) = f(t)

by
1
(Atx)2 [uk—1 = 2uk + ug1] + Aug = fi, k=1,....n.
Using up = 0 and up41 = 0 write
[a 1 1 u fi
1 (6% 1 u» f2
' L | = (A
1 1 Un—1 fn—l
1 Up fn
- ——— —-——
M u f

Here a = —2 + A(At)?
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BVP

Example when n =3

u(0) = u(l)=0
approximated by
2+ AN 1 0 A &7
1 —2+ 15 A 1 ) =16|1
1 1
0 1 -2 + TﬁA us ﬁ

» First/last entry = 0 is “built in”
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BVP

Some linear algebra

Proposition
For linear transformation L : R" — R”, the solvability of the
equation

(%) L(u) =f

is described as follows:
1. Ifker(L£) = {0}, then (%) has a unique solution for all f € R".
2. Ifker(L) # {0}, then either

2.1 f € ker(L*)*, in which case (%) has multiple solutions, or
2.2 f ¢ ker(L*)*, in which case (%) does not have a solution.

Here L£* is the adjoint transformation of L:
If £(u) = Mu, then £*(u) = M'u
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BVP

Example when n =3

1 —2+&x 1

-2+ 35X 1 0 n
1 >
0 1 -2+ 6] \us

Compute

(5 3) (3209 (-2

» Unique solution if \ ¢ {32,32 — 161/2,32 + 161/2}

1
> If A = 32 then null (M) = span 0
-1
1
2 1
Since | 1 |-| 0 | =0 we have multiple solutions.
1
7 -1

» Also multiple solutions if A = 32 + 16v/2.
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BVP

Example when n = 3 continued

-2+ 4
1
0

1
-2+ &\
1

0
1
-2+ %

I

uy
uz
uz

i

=

|

> If A =32 — 16v/2 then null (M) = span

» Since

1

V2
1

S5l

= 0, no solutions.

1

V2
1
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BVP

Summary of example when n =3

» We understand solvability of approximate system by
computing detM

» For most values of A, there exists unique solution

» For exceptional values of A either no solution or many
solutions, depending on whether RHS is orthogonal to null
space.

Now we need to do this for general n x n matrix M. ..
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BVP

Computing determinants

> Let d, =

» Expand around first row: d, = ad,_1 — d,_»
» Subject to di = «, db = a?2—1

> When o® # 4 we find dp = ——— [(Z+)n+1 _ (L)nﬂ],

where
an 2
—) =1
(3)

Zy =

Nl e
H-

» When o? = 4, d, # 0.
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BVP

Exceptional values of A

» detM = 0 when

/
N =2n+1)2]1— il I=1.2.....n
| (n+ )[ cos<n+1)], ,2,...,n

» With A = )\,

null (M) = span < v,

» This looks familiar!
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BVP

Solvability of approximate problem

Translating the linear algebra theorem, we have

1. If X is not one of the exceptional values, then the null space of
M is trivial and the approximate problem has a unique
solution for each vector f.

2. If X = X, one of the exceptional values, then the null space of
M is non-trivial and is spanned by v;. Furthermore,

2.1 if vj - f = 0 the approximate problem has multiple solutions,
while

2.2 if vy - f #£ 0 the approximate problem does not admit any
solutions.

This sets expectations for original problem. ..



BVP

Returning to original BVP

» Expectation: Original problem modeled by limit n — oo

» Compute using Taylor expansion of cosine

1-— {1— % (n711>2+(’)(n4)}]

= (71> + 0O (n?)

A =2(n+1)>

» Conjecture:
» If X (n/)? for I =0,1,2,... then there exists unique
solution.
» If A = (n/)? for some / = 0,1,2,... then either no solution or
many solutions. . .
... depending on “orthogonality to v(t) = sin (7 /t)"
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Orthogonality

What should “orthogonality to sin (7/t) mean?

> In approximate setting, it means

f n-1+1 sin nTJrrll
0= f ”il : sin ’%Ill :if(tk)sin(wltk)
() \snlst)
» Riemann sum for / f(t)v(t)dt vi(t) = sin (7lt)

1
» Use inner product (f, g) / f(t
0
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BVP

Boundary value problem, revisited

u"(x) + Au(x) = sin(mx), x€(0,1)
u(0) =0, u(1l) =0, A>0
Are there solutions?
» A\ = 7 not an exceptional value
~= unique solution
> A=72 =)\
Since f(t) = vi(t)sin (mx) ~» no solution
> =412 =)\
Is f(t) = sin (mt) orthogonal to v(t) = sin (27x)?
Yes ~~ multiple solutions

25 /27



BVP

More formally. ..

> View L = j—:z — A as linear transformation Vy — V
» V={u:[0,1] - R finite norm }
» Vo={ue V]|u(0)=0,u(l) =0}
» Express generic BVP as finding u such that L(u) = f
> “Same theorem” describes solvability:
1. If ker(L£) contains only the zero function, then we have a
unique solution for all f.
2. If ker(L) contains a non-zero function, then either
2.1 f € ker(£*)™, in which case we have multiple solutions, or

2.2 f ¢ ker(£*)*, in which case we have has no solution.

» Case 1 occurs for all but a countable list of A

“Fredholm alternative”. .. “spectrum”. .. “functional analysis". ..

26
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The end

Summary & Conclusion

» Numerical analysis sheds interesting light on solvability of
problems.

» Existence and uniqueness theory for boundary value problems
is “complicated” <> “interesting”

» One can construct an approximate problem involving linear
mappings of R”

» Theory for mappings of R” has same structure theory for
linear mappings of function spaces.

» Vector spaces are everywhere!

Thank you!
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